1
|
Chen Y, Tang Y, Li Y, Rui Y, Zhang P. Enhancing the Efficacy of Active Pharmaceutical Ingredients in Medicinal Plants through Nanoformulations: A Promising Field. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1598. [PMID: 39404324 PMCID: PMC11478102 DOI: 10.3390/nano14191598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
This article explores the emerging field of nanomedicine as a drug delivery system, aimed at enhancing the therapeutic efficacy of active pharmaceutical ingredients in medicinal plants. The traditional methods of applying medicinal plants present several limitations, such as low bioavailability, poor solubility, challenges in accurately controlling drug dosage, and inadequate targeting. Nanoformulations represent an innovative approach in drug preparation that employs nanotechnology to produce nanoscale particles or carriers, which are designed to overcome these limitations. Nanoformulations offer distinct advantages, significantly enhancing the solubility and bioavailability of drugs, particularly for the poorly soluble components of medicinal plants. These formulations effectively enhance solubility, thereby facilitating better absorption and utilization by the human body, which in turn improves drug efficacy. Furthermore, nanomedicine enables targeted drug delivery, ensuring precise administration to the lesion site and minimizing side effects on healthy tissues. Additionally, nanoformulations can regulate drug release rates, extend the duration of therapeutic action, and enhance the stability of treatment effects. However, nanoformulations present certain limitations and potential risks; their stability and safety require further investigation, particularly regarding the potential toxicity with long-term use. Nevertheless, nanomaterials demonstrate substantial potential in augmenting the efficacy of active pharmaceutical ingredients in medicinal plants, offering novel approaches and methodologies for their development and application.
Collapse
Affiliation(s)
- Yuhao Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yuying Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
- Tangshan Jinhai New Material Co., Ltd., Tangshan 063000, China
- Faculty of Resources and Environment, China Agricultural University, Shanghe County Baiqiao Town Science and Technology Courtyard, Jinan 250100, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Lee TK, Hur G, Choi J, Ban C, Kim JY, Yang H, Park JHY, Lee KW, Kim JH. Enhancing stability and bioavailability of sulforaphene in radish seed extracts using nanoemulsion made with high oleic sunflower oil. Food Sci Biotechnol 2023; 32:1269-1279. [PMID: 37362810 PMCID: PMC10290006 DOI: 10.1007/s10068-023-01304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 04/07/2023] Open
Abstract
The effect of nanoemulsions on the stability and bioavailability of sulforaphene (SFEN) in radish seed extract (RSE) was investigated. Four types of oil were used as lipid ingredients of the nanoemulsions: soybean, high oleic acid sunflower, coconut, and hydrogenated palm oils. SFEN in RSE nanoemulsions showed greater stability to temperature, acid, and alkaline conditions than SFEN in RSE suspended in water (RSE-S). Particularly under alkaline conditions, the half-life of SFEN in the nanoemulsion with high oleic sunflower oil (RSE-HOSO) was 8 times longer than that of RSE-S. Furthermore, in the pharmacokinetics study, it was observed that AUC0-8 increased and oral clearance (CL/F) decreased significantly in rats orally administered RSE-HOSO compared with RSE-S (p < 0.05). This study indicates that the type of oil used in nanoemulsions affects the stability and bioavailability of SFEN in RSE. These results may provide a guideline for the development of functional foods containing RSE. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01304-2.
Collapse
Affiliation(s)
- Tae Kyung Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Gihyun Hur
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jeongyoon Choi
- Department of Next Generation Applied Sciences, Graduate School, Sungshin Women’s University, Seoul, 01133 Republic of Korea
| | - Choongjin Ban
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504 Republic of Korea
| | - Jong-Yea Kim
- Department of Food Science and Biotechnology, Institute of Fermentation and Brewing, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Hee Yang
- Department of Food and Nutrition, Kookmin University, Seoul, 02707 Republic of Korea
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, Seoul, 08826 Republic of Korea
| | - Ki Won Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, 08826 Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229 Republic of Korea
| | - Jong Hun Kim
- Department of Food Science and Biotechnology, Institute for Basic Sciences, Sungshin Women’s University, Seoul, 01133 Republic of Korea
| |
Collapse
|
3
|
Ullah N, Amin A, Farid A, Selim S, Rashid SA, Aziz MI, Kamran SH, Khan MA, Rahim Khan N, Mashal S, Mohtasheemul Hasan M. Development and Evaluation of Essential Oil-Based Nanoemulgel Formulation for the Treatment of Oral Bacterial Infections. Gels 2023; 9:gels9030252. [PMID: 36975701 PMCID: PMC10048686 DOI: 10.3390/gels9030252] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Prevalence of oral infections in diabetic patients is a health challenge due to persistent hyperglycemia. However, despite great concerns, limited treatment options are available. We therefore aimed to develop nanoemulsion gel (NEG) for oral bacterial infections based on essential oils. Clove and cinnamon essential oils based nanoemulgel were prepared and characterized. Various physicochemical parameters of optimized formulation including viscosity (65311 mPa·S), spreadability (36 g·cm/s), and mucoadhesive strength 42.87 N/cm2) were within prescribed limits. The drug contents of the NEG were 94.38 ± 1.12% (cinnamaldehyde) and 92.96 ± 2.08% (clove oil). A significant concentration of clove (73.9%) and cinnamon essential oil (71.2 %) was released from a polymer matrix of the NEG till 24 h. The ex vivo goat buccal mucosa permeation profile revealed a significant (52.7-54.2%) permeation of major constituents which occurred after 24 h. When subjected to antimicrobial testing, significant inhibition was observed for several clinical strains, namely Staphylococcus aureus (19 mm), Staphylococcus epidermidis (19 mm), and Pseudomonas aeruginosa (4 mm), as well as against Bacillus chungangensis (2 mm), whereas no inhibition was detected for Bacillus paramycoides and Paenibacillus dendritiformis when NEG was utilized. Likewise promising antifungal (Candida albicans) and antiquorum sensing activities were observed. It was therefore concluded that cinnamon and clove oil-based NEG formulation presented significant antibacterial-, antifungal, and antiquorum sensing activities.
Collapse
Affiliation(s)
- Niamat Ullah
- Natural Products Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Adnan Amin
- Natural Products Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Arshad Farid
- Gomal Centre of Biochemistry and Biotechnology (GCBB), Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Sheikh Abdur Rashid
- Nano Carriers Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muhammad Imran Aziz
- Natural Products Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Sairah Hafeez Kamran
- Department of Pharmacology, Faculty of Allied Health and Pharmaceutical Sciences, Lahore College for Women University, Lahore 05422, Pakistan
| | - Muzammil Ahmad Khan
- Gomal Centre of Biochemistry and Biotechnology (GCBB), Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Nauman Rahim Khan
- Department of Pharmacy, Kohat University of Science and Technology, KUST, Kohat 26000, Pakistan
| | - Saima Mashal
- Natural Products Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
- Gomal Centre of Biochemistry and Biotechnology (GCBB), Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muhammad Mohtasheemul Hasan
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
4
|
Sah MK, Gautam B, Pokhrel KP, Ghani L, Bhattarai A. Quantification of the Quercetin Nanoemulsion Technique Using Various Parameters. Molecules 2023; 28:molecules28062540. [PMID: 36985511 PMCID: PMC10052722 DOI: 10.3390/molecules28062540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
Natural antioxidant polyphenolic compounds obtained from different plants are considered antioxidants for curing various chronic pathological diseases such as cardiovascular disorders and cancer. Quercetin (a polyphenolic flavonol) has attracted much attention from dietitians and medicinal chemists due to its wide variety of pharmacological activities, including anti-diabetic, anti-hypertensive, anti-carcinogenic, anti-asthmatic, anti-viral, and antioxidant activities. Furthermore, structurally, it is well suited to stabilize emulsions. The present review depicts the important role of the quercetin nanoemulsion technique, used to enhance the solubility of target materials both in vivo and in vitro as well as to decrease the risk of degradation and metabolism of drugs. Researchers have used cryo-TEM to study the morphology of quercetin nanoemulsions. The effects of various parameters such as pH, salts, and solvent concentration on quercetin nanoemulsion have been investigated for quercetin nanoemulsion. Many studies have used UV–Vis spectroscopy and HPLC for the characterization of these particles such as solubility, stability, and encapsulating efficiency.
Collapse
Affiliation(s)
- Manish Kumar Sah
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Bibaran Gautam
- Central Department of Chemistry, Tribhuvan University Campus, Kathmandu 44618, Nepal
| | | | - Lubna Ghani
- Department of Chemistry, Women University of Azad Jammu and Kashmir, Bagh 12500, Pakistan
- Correspondence: or (L.G.); or (A.B.); Tel.: +977-9842077434 (A.B.)
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
- Department of Chemistry, Indian Institute of Technology, Chennai 600036, India
- Correspondence: or (L.G.); or (A.B.); Tel.: +977-9842077434 (A.B.)
| |
Collapse
|
5
|
Montes C, Villamayor N, Villaseñor MJ, Rios A. Distinctive sensing nanotool for free and nanoencapsulated quercetin discrimination based on S,N co-doped graphene dots. Anal Chim Acta 2022; 1230:340406. [DOI: 10.1016/j.aca.2022.340406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/08/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
|
6
|
Fabrication and Optimization of Essential-Oil-Loaded Nanoemulsion Using Box-Behnken Design against Staphylococos aureus and Staphylococos epidermidis Isolated from Oral Cavity. Pharmaceutics 2022; 14:pharmaceutics14081640. [PMID: 36015266 PMCID: PMC9416493 DOI: 10.3390/pharmaceutics14081640] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Oral bacterial infections are fairly common in patients with diabetes mellitus; however, due to limited treatment options, herbal medicines are considered an alternate solution. This study aimed to formulate a stable essential-oil-loaded nanoemulsion for the treatment of oral bacterial infections. Essential oils from edible sources including coriander, clove, cinnamon and cardamom were extracted by hydrodistillation. The response surface methodology was used to optimize the nanoemulsion formulation by applying the Box–Behnken design. The oil concentration, surfactant concentration and stirring speed were three independent factors, and particle size and polydispersity index were two responses. The particle size, polydispersity index and zeta potential of the optimized formulation were 130 mm, 0.222 and −22.9, respectively. The ATR-FTIR analysis revealed that there was no incompatibility between the active ingredients and the excipients. A significant release profile in active ingredients of nanoemulsion, i.e., 88.75% of the cinnamaldehyde and 89.33% of eugenol, was recorded after 24 h. In the ex vivo goat mucosal permeation study, 71.67% of the cinnamaldehyde permeated and that of the eugenol 70.75% from the nanoemulsion. The optimized formulation of the essential-oil-loaded nanoemulsion showed a 9 mm zone of inhibition against Staphylococcus aureus and Staphylococcus epidermidis, whereas in anti-quorum sensing analysis, the optimized nanoemulsion formulation showed an 18 mm zone of inhibition. It was concluded that formulated essential-oil-loaded nanoemulsion can be used against S. epidermidis and S. aureus infections in oral cavity.
Collapse
|
7
|
Ozogul Y, Karsli GT, Durmuş M, Yazgan H, Oztop HM, McClements DJ, Ozogul F. Recent developments in industrial applications of nanoemulsions. Adv Colloid Interface Sci 2022; 304:102685. [PMID: 35504214 DOI: 10.1016/j.cis.2022.102685] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023]
Abstract
Nanotechnology is being utilized in various industries to increase the quality, safety, shelf-life, and functional performance of commercial products. Nanoemulsions are thermodynamically unstable colloidal dispersions that consist of at least two immiscible liquids (typically oil and water), as well as various stabilizers (including emulsifiers, texture modifiers, ripening inhibitors, and weighting agents). They have unique properties that make them particularly suitable for some applications, including their small droplet size, high surface area, good physical stability, rapid digestibility, and high bioavailability. This article reviews recent developments in the formulation, fabrication, functional performance, and gastrointestinal fate of nanoemulsions suitable for use in the pharmaceutical, cosmetic, nutraceutical, and food industries, as well as providing an overview of regulatory and health concerns. Nanoemulsion-based delivery systems can enhance the water-dispersibility, stability, and bioavailability of hydrophobic bioactive compounds. Nevertheless, they must be carefully formulated to obtain the required functional attributes. In particular, the concentration, size, charge, and physical properties of the nano-droplets must be taken into consideration for each specific application. Before launching a nanoscale product onto the market, determination of physicochemical characteristics of nanoparticles and their potential health and environmental risks should be evaluated. In addition, legal, consumer, and economic factors must also be considered when creating these systems.
Collapse
Affiliation(s)
- Yesim Ozogul
- Cukurova University, Seafood Processing Technology, Adana, Turkey.
| | | | - Mustafa Durmuş
- Cukurova University, Seafood Processing Technology, Adana, Turkey
| | - Hatice Yazgan
- Cukurova University, Faculty of Ceyhan Veterinary Medicine, Department of Food Hygiene and Technology of Veterinary Medicine, Adana, Turkey
| | - Halil Mecit Oztop
- Middle East Technical University, Department of Food Engineering, Ankara, Turkey
| | | | - Fatih Ozogul
- Cukurova University, Seafood Processing Technology, Adana, Turkey
| |
Collapse
|
8
|
Elmeligy S, Hathout RM, Khalifa SA, El-Seedi HR, Farag MA. Pharmaceutical manipulation of citrus flavonoids towards improvement of its bioavailability and stability. A mini review and a meta-analysis study. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Ferrari Cervi V, Parcianello Saccol C, Henrique Marcondes Sari M, Cristóvão Martins C, Saldanha da Rosa L, Dias Ilha B, Zovico Soares F, Luchese C, Antunes Wilhelm E, Cruz L. Pullulan film incorporated with nanocapsules improves pomegranate seed oil anti-inflammatory and antioxidant effects in the treatment of atopic dermatitis in mice. Int J Pharm 2021; 609:121144. [PMID: 34600055 DOI: 10.1016/j.ijpharm.2021.121144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to prepare pullulan films containing pomegranate seeds oil (PSO) based nanocapsules, and evaluate the formulation efficacy in the treatment of atopic dermatitis (AD)-like lesions induced by 2,4-dinitrochlorobenzene (DNCB). The Eudragit RS 100® nanocapsules (PSONC) were prepared by the interfacial precipitation of preformed polymer, whereas the films were produced by the solvent casting method. Pomegranate seed oil nanoemulsions (PSONE) were prepared by the spontaneous emulsification method for comparative reasons. Both nanosystems presented adequate mean diameter (248 ± 16 nm for PSONE and 181 ± 6 nm for PSONC), polydispersity index (below 0.2), zeta potential (-25.63 ± 1.1 mV for PSONE and + 43.13 ± 0.7 mV for PSONC) and pH in the acid range (6.77 ± 0.27 and 5.31 ± 0.17, PSONE and PSONC). By a pre-formulation study, sorbitol (6.5%) and PEG 400 (1.5%) were considered the most suitable plasticizers for developing pullulan films (6%) intending topical application. In general, pullulan films were classified as flexible and hydrophilic, with high occlusive properties, 57.6 ± 0.8%, 64.6 ± 0.8% for vehicle, PSONCF (pullulan film containing PSONC), respectively. All formulations (films and nanocarriers) presented no irritant potential in the chorioallantoic membrane test. In the in vivo model, the treatments with free PSO and PSONCF attenuated the skin injury as well as the mechanical hypernociceptive behavioral induced by DNCB exposure to mice. Importantly, the biochemical analyses provided evidence that only the treatment with PSONCF modulated the inflammatory and the oxidative stress parameters evaluated in this study. In conclusion, these data lead us to believe that PSONC incorporation into a pullulan film matrix improved the biological properties of the PSO in this AD-model.
Collapse
Affiliation(s)
- Verônica Ferrari Cervi
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Camila Parcianello Saccol
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Marcel Henrique Marcondes Sari
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Carolina Cristóvão Martins
- Laboratório de Pesquisa em Farmacologia Bioquímica - Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP 96010-900, RS, Brazil
| | - Lucas Saldanha da Rosa
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria CEP 97015-372, RS, Brazil
| | - Bruna Dias Ilha
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria CEP 97015-372, RS, Brazil
| | - Fábio Zovico Soares
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria CEP 97015-372, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica - Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP 96010-900, RS, Brazil
| | - Ethel Antunes Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica - Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP 96010-900, RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil.
| |
Collapse
|
10
|
Luis Máximo Daneluti A, Offenbecker Guerra L, Valéria Robles Velasco M, do Rosário Matos J, Rolim Baby A, Kalia YN. Preclinical and clinical studies to evaluate cutaneous biodistribution, safety and efficacy of UV filters encapsulated in mesoporous silica SBA-15. Eur J Pharm Biopharm 2021; 169:113-124. [PMID: 34637918 DOI: 10.1016/j.ejpb.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Innovative technologies have been designed to improve efficacy and safety of chemical UV filters. Encapsulation can enhance efficacy and reduce transdermal permeation and systemic exposure. The aims of this work were (i) to determine the cutaneous biodistribution of avobenzone (AVO), oxybenzone (OXY), and octyl methoxycinnamate (OMC) incorporated in mesoporous silica SBA-15 and (ii) to perform preclinical (in vitro) and (iii) clinical safety studies to demonstrate their innocuity and to evaluate sun protection factor (SPF) in humans. Skin penetration studies showed that deposition of OXY and AVO in porcine and human skin after application of stick formulation with incorporated filters (stick incorporated filters) was significantly lower than from a marketed (non-encapsulated) stick. Cutaneous deposition and transdermal permeation of OXY in and across human skin were 3.8-and 13.4- fold lower, respectively, after application of stick entrapped filters. Biodistribution results showed that encapsulation in SBA-15 decreased AVO and OXY penetration reaching porcine and human dermis. Greater deposition (and permeation) of OXY in porcine skin than in human skin, pointed to the role of follicular transport. Stick incorporated filters had good biocompatibility in vivo and safety profiles, even under sun-exposed conditions. Entrapment of UV filters improved the SPF by 26% and produced the same SPF profile as a marketed stick. Overall, the results showed that SBA-15 enabled safety and efficacy of UV filters to be increased.
Collapse
Affiliation(s)
| | | | | | | | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva.
| |
Collapse
|
11
|
Costa SCC, Damasceno PKF, Lima RGG, Botura MB, Branco CRC, Silva TRS, Oliveira AP, Guimarães AL, Almeida JRGS, Branco A. Evaluation of antioxidant, photoprotective and antinociceptive activities of Marcetia macrophylla extract: potential for formulation of sunscreens. BRAZ J BIOL 2021; 83:e246312. [PMID: 34550281 DOI: 10.1590/1519-6984.246312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/18/2021] [Indexed: 11/22/2022] Open
Abstract
The antioxidant, photoprotective and antinociceptive Marcetia macrophylla active extract was investigated as an active ingredient in a sunscreen cream formulation. Thus, the M. macrophylla extract showed IC50 of 3.43 mg/ml of the antioxidant (DPPH∙ scavenging test) and Sun Protection Factor of 20.25 (SPF/UV-B, at 250 µg/ml) and UV-A of 78.09% (photobleaching trans-resveratrol test). The antinociceptive activity was superior to all standards tested using the in vivo acetic acid-induced writhing test (99.14% at the dose of 200 mg/kg) and the high-performance liquid chromatography coupled with diode array detector and mass spectroscopy multi-stage (HPLC-DAD-MS/MS) enabled the structural characterization of the quercetin-3-O-hexoside, quercetin-3-O-pentoside and quercetin-3-O-desoxihexoside. The pharmaceutical formulation containing the Marcetia macrophylla crude active extract was prepared and the physicochemical tests (organoleptic characteristics, pH analysis and centrifugation), the in vitro UVB (sun protection factor, SPF) and UVA (β-carotene) using the spectroscopic method were investigated. The formulation showed satisfactory results concerning the physicochemical parameters evaluated and active against the UV test. Thus, M. macrophylla showed biological activities with potential use in pharmaceutical preparations.
Collapse
Affiliation(s)
- S C C Costa
- Universidade Estadual de Feira de Santana - UEFS, Departamento de Saúde, Feira de Santana, Bahia, Brasil
| | - P K F Damasceno
- Universidade Estadual de Feira de Santana - UEFS, Departamento de Saúde, Feira de Santana, Bahia, Brasil
| | - R G G Lima
- Universidade Estadual de Feira de Santana - UEFS, Departamento de Saúde, Feira de Santana, Bahia, Brasil
| | - M B Botura
- Universidade Estadual de Feira de Santana - UEFS, Departamento de Saúde, Feira de Santana, Bahia, Brasil
| | - C R C Branco
- Universidade Estadual de Feira de Santana - UEFS, Departamento de Saúde, Feira de Santana, Bahia, Brasil
| | - T R S Silva
- Universidade Estadual de Feira de Santana - UEFS, Departamento de Ciências Biológicas, Feira de Santana, Bahia, Brasil
| | - A P Oliveira
- Universidade Federal do Vale do São Francisco - UNIVASF, Núcleo de Estudos e Pesquisas de Plantas Medicinais - NEPLAME, Petrolina, Pernambuco, Brasil
| | - A L Guimarães
- Universidade Federal do Vale do São Francisco - UNIVASF, Núcleo de Estudos e Pesquisas de Plantas Medicinais - NEPLAME, Petrolina, Pernambuco, Brasil
| | - J R G S Almeida
- Universidade Federal do Vale do São Francisco - UNIVASF, Núcleo de Estudos e Pesquisas de Plantas Medicinais - NEPLAME, Petrolina, Pernambuco, Brasil
| | - A Branco
- Universidade Estadual de Feira de Santana - UEFS, Departamento de Saúde, Feira de Santana, Bahia, Brasil
| |
Collapse
|
12
|
Xue F, Li X, Qin L, Liu X, Li C, Adhikari B. Anti-aging properties of phytoconstituents and phyto-nanoemulsions and their application in managing aging-related diseases. Adv Drug Deliv Rev 2021; 176:113886. [PMID: 34314783 DOI: 10.1016/j.addr.2021.113886] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/13/2021] [Accepted: 07/18/2021] [Indexed: 12/22/2022]
Abstract
Aging is spontaneous and inevitable process in all living beings. It is a complex natural phenomenon that manifests as a gradual decline of physiological functions and homeostasis. Aging inevitably leads to age-associated injuries, diseases, and eventually death. The research on aging-associated diseases aimed at delaying, preventing or even reversing the aging process are of great significance for healthy aging and also for scientific progress. Numerous plant-derived compounds have anti-aging effects, but their therapeutic potential is limited due to their short shelf-life and low bioavailability. As the novel delivery system, nanoemulsion can effectively improve this defect. Nanoemulsions enhance the delivery of drugs to the target site, maintain the plasma concentration for a longer period, and minimize adverse reaction and side effects. This review describes the importance of nanoemulsions for the delivery of phyto-derived compounds and highlights the importance of nanoemulsions in the treatment of aging-related diseases. It also covers the methods of preparation, fate and safety of nanoemulsions, which will provide valuable information for the development of new strategies in treatment of aging-related diseases.
Collapse
|
13
|
Li G, Zhang Z, Liu H, Hu L. Nanoemulsion-based delivery approaches for nutraceuticals: fabrication, application, characterization, biological fate, potential toxicity and future trends. Food Funct 2021; 12:1933-1953. [PMID: 33596279 DOI: 10.1039/d0fo02686g] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the modern food industry, people are paying more and more attention to the use of edible nanoemulsions to encapsulate, protect and deliver lipophilic functional ingredients, such as volatile additives, polyphenols, aromas, pigments, proteins, vitamins, oil-soluble flavors, preservatives, etc., which are the current global needs. Nanoemulsions are constructed with droplets of nano range size and they offer many potential advantages over conventional emulsions including the delivery of both hydrophilic and hydrophobic compounds, higher stability, better antibacterial properties, good taste experience, higher affinity, longer shelf-life and improvement of the bioavailability of components. Moreover, they are highly capable of improving the wettability and/or solubility of poorly water-soluble compounds, which may result in better pharmacokinetic and pharmacodynamic properties of nutraceutical compounds. On the other hand, oral nanoemulsions also have certain risks, such as their ability to change the biological fate of biologically active ingredients in the gastrointestinal tract and the potential toxicity of certain ingredients used in their production. This review article summarizes the manufacturing, application, characterization, biological fate, potential toxicity, and future challenges and trends of nanoemulsions, and focuses on nanoemulsion-based nutraceutical delivery approaches suitable for the food industry.
Collapse
Affiliation(s)
- Guotao Li
- School of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071000, China. and Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Zhengyu Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071000, China. and Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Haofan Liu
- College of Quality and Technical Supervision, Hebei University, Baoding, China and Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Liandong Hu
- School of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071000, China. and College of Quality and Technical Supervision, Hebei University, Baoding, China and Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
14
|
Campelo MDS, Melo EO, Arrais SP, Nascimento FBSAD, Gramosa NV, Soares SDA, Ribeiro MENP, Silva CRD, Júnior HVN, Ricardo NMPS. Clove essential oil encapsulated on nanocarrier based on polysaccharide: A strategy for the treatment of vaginal candidiasis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Yang S, Liu L, Han J, Tang Y. Encapsulating plant ingredients for dermocosmetic application: an updated review of delivery systems and characterization techniques. Int J Cosmet Sci 2020; 42:16-28. [PMID: 31724203 DOI: 10.1111/ics.12592] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022]
Abstract
Today, there is a rising demand and ongoing search for novel plant-derived phytochemicals in the cosmetic market owing to the growing consumer expectations worldwide for green and natural health products. Various plant ingredients, including polyphenols, oils, volatile oils, vitamins and other herbal extracts, have been extensively used in herbal cosmetics. Recent advances in encapsulation technologies have greatly improved their chemical stability, biocompatibility, skin permeability and dermocosmetic efficiency when applied topically. This comprehensive review summarizes the up-to-date information on encapsulated plant ingredients tailored for dermocosmetic application with a focus on the development of novel delivery systems. An overview of the commonly used techniques for carrier characterization, performance-related properties and toxicological evaluation is also included, which might provide guidance for researchers to select or develop appropriate assay systems.
Collapse
Affiliation(s)
- S Yang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, 100048, China.,Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing, 100048, China
| | - L Liu
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, 100048, China.,Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing, 100048, China
| | - J Han
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, 100048, China.,Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Y Tang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, 100048, China.,Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
16
|
Barbosa VT, de Menezes JB, Santos JCC, Bastos MLDA, de Araújo-Júnior JX, do Nascimento TG, Basílio-Júnior ID, Grillo LAM, Dornelas CB. Characterization and Stability of the Antimony-Quercetin Complex. Adv Pharm Bull 2019; 9:432-438. [PMID: 31592433 PMCID: PMC6773938 DOI: 10.15171/apb.2019.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/05/2019] [Accepted: 05/02/2019] [Indexed: 11/09/2022] Open
Abstract
Purpose: Quercetin is a flavonoid known for its therapeutic properties and for forming complexes. Although the antimony-quercetin (SbQ) complex has been produced before, no previous exploration of its characteristics has been published in literature. Thus, this study aimed to characterize this complex, assess its stability and investigate its complexation site through its antibacterial activity. Methods: The SbQ complex was synthetized using Sb(III) potassium tartrate trihydrate and quercetin anhydrous (1:1) (v/v) as a solution and dried using three methods: rotaevaporation, lyophilization and spray drying. The material, in solution, was analyzed by UV-vis and fluorimetry; and, in the powder, by X-ray diffraction (XRD), both scanning electronic and fluorescence microscopy and infrared spectroscopy (FT-IR). Antimicrobial activity was evaluated via broth microdilution. Results: UV-vis exhibited a shoulder peak at 291 nm indicating metal chelation at C-ring of quercetin and confirmed 1:1 stoichiometry. Spectrofluorimetry showed an increase of intensity with the complex formation with an emission band (525 nm). After drying, XRD and SEM indicated loss of crystallinity and a difference in shape and size of the complex compared to its precursors. FT-IR suggested by a shift of frequency of the carbonyl group (1661 cm-1) that the quercetin bond to antimony by the C-3, followed by positions C-5 and C-4 carbonyl, which has been confirmed by MIC through the structure-activity relationship of the antibacterial activity of quercetin. Conclusion: These results provided a characterization of SbQ complex with the confirmation of its binding site, working as a guide for future studies involving this complex.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Camila Braga Dornelas
- Departamento de Farmácia, Escola de Enfermagem e Farmácia, Universidade Federal de Alagoas
| |
Collapse
|
17
|
Application of pH-Responsive Fucoidan/Chitosan Nanoparticles to Improve Oral Quercetin Delivery. Molecules 2019; 24:molecules24020346. [PMID: 30669398 PMCID: PMC6359289 DOI: 10.3390/molecules24020346] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 02/01/2023] Open
Abstract
Polymeric nanoparticles based on fucoidan and chitosan were developed to deliver quercetin as a novel functional food. Through the polyelectrolyte self-assembly method, fucoidan/chitosan (F/C) nanoparticles were obtained with three different weight ratios (1/1, 3/1, and 5/1). The content of quercetin in the fucoidan/chitosan nanoparticles was in the range 110 ± 3 to 335 ± 4 mg·mL-1, with the increase of weight ratio of fucoidan to chitosan in the nanoparticle. Physicochemically stable nanoparticles were obtained with a particle size within the 300⁻400 nm range and surface potential higher than +30 mV for the 1F/1C ratio nanoparticle and around -30 mV for the 3F/1C and 5F/1C ratios nanoparticles. The 1F/1C ratio nanoparticle became larger and more unstable as the pH increased from 2.5 to 7.4, while the 3F/1C and 5F/1C nanoparticles retained their initial characteristics. This result indicates that the latter nanoparticles were stable along the gastrointestinal tract. The quercetin-loaded fucoidan/chitosan nanoparticles showed strong antioxidant activity and controlled release under simulated gastrointestinal environments (in particular for the 3F/1C and 5F/1C ratios), preventing quercetin degradation and increasing its oral bioavailability.
Collapse
|
18
|
de Carli C, Moraes-Lovison M, Pinho SC. Production, physicochemical stability of quercetin-loaded nanoemulsions and evaluation of antioxidant activity in spreadable chicken pâtés. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.08.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|