1
|
Lamch Ł, Ronka S, Warszyński P, Wilk KA. NMR studies of self-organization behavior of hydrophobically functionalized poly(4-styrenosulfonic-co-maleic acid) in aqueous solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
2
|
Hydrophobically Functionalized Poly(Acrylic Acid) Comprising the Ester-Type Labile Spacer: Synthesis and Self-Organization in Water. Polymers (Basel) 2020; 12:polym12051185. [PMID: 32455970 PMCID: PMC7285226 DOI: 10.3390/polym12051185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022] Open
Abstract
One of the most important properties of hydrophobically functionalized polyelectrolytes (HF-PEs) and their assemblies is their ability to encapsulate hydrophobic/amphiphilic agents and provide release on demand of the entrapped payload. The aim of the present work was to synthesize and study self-organization behavior in aqueous solution of hydrophobically functionalized poly(acrylic acid) (PAA) comprising the ester-type pH labile moiety with various degrees of hydrophobization and side-chain lengths in the absence and presence of appropriate mono- and polyvalent electrolytes (i.e., NaCl or CaCl2). The synthesis and purification of hydrophobically functionalized PAA were performed under mild conditions in order to avoid chemical degradation of the polymers. The modified polyelectrolytes self-assembly in aqueous systems was monitored using diffusion-ordered nuclear magnetic resonance (DOSY NMR). The performed studies, supported by the all-atoms molecular dynamics simulations, revealed a strong dependence of polyelectrolyte self-assembled state on concentration—specific concentration regions with the coexistence of both smaller and larger aggregates were observed (values of hydrodynamic diameter DH around one nanometer and between two to six nanometers, respectively). Our investigations enabled us to gain crucial information about the self-assembly of the hydrophobically functionalized poly(acrylic acid) and opened the possibility of understanding and predicting its performance under various conditions.
Collapse
|
3
|
Stanimirova RD, Kralchevsky PA, Danov KD, Xu H, Ung YW, Petkov JT. Oil drop deposition on solid surfaces in mixed polymer-surfactant solutions in relation to hair- and skin-care applications. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Lamch Ł, Pucek A, Kulbacka J, Chudy M, Jastrzębska E, Tokarska K, Bułka M, Brzózka Z, Wilk KA. Recent progress in the engineering of multifunctional colloidal nanoparticles for enhanced photodynamic therapy and bioimaging. Adv Colloid Interface Sci 2018; 261:62-81. [PMID: 30262128 DOI: 10.1016/j.cis.2018.09.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
Abstract
This up-to-date review summarizes the design and current fabrication strategies that have been employed in the area of mono- and multifunctional colloidal nanoparticles - nanocarriers well suited for photodynamic therapy (PDT) and diagnostic purposes. Rationally engineered photosensitizer (PS)-loaded nanoparticles may be achieved via either noncovalent (i.e., self-aggregation, interfacial deposition, interfacial polymerization, or core-shell entrapment along with physical adsorption) or covalent (chemical immobilization or conjugation) processes. These PS loading approaches should provide chemical and physical stability to PS payloads. Their hydrophilic surfaces, capable of appreciable surface interactions with biological systems, can be further modified using functional groups (stealth effect) to achieve prolonged circulation in the body after administration and/or grafted by targeting agents (such as ligands, which bind to specific receptors uniquely expressed on the cell surface) or stimuli (e.g., pH, temperature, and light)-responsive moieties to improve their action and targeting efficiency. These attempts may in principle permit efficacious PDT, combination therapies, molecular diagnosis, and - in the case of nanotheranostics - simultaneous monitoring and treatment. Nanophotosensitizers (nano-PSs) should possess appropriate morphologies, sizes, unimodal distributions and surface processes to be successfully delivered to the place of action after systemic administration and should be accumulated in certain tumors by passive and/or active targeting. Additionally, physically facilitating drug delivery systems emerge as a promising approach to enhancing drug delivery, especially for the non-invasive treatment of deep-seated malignant tissues. Recent advances in nano-PSs are scrutinized, with an emphasis on design principles, via the promising use of colloid chemistry and nanotechnology.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Agata Pucek
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Medical University of Wrocław, Borowska 211A, 50-556 Wrocław, Poland
| | - Michał Chudy
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Jastrzębska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Katarzyna Tokarska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Magdalena Bułka
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Zbigniew Brzózka
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kazimiera A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
6
|
Ferreira GA, Loh W. Liquid crystalline nanoparticles formed by oppositely charged surfactant-polyelectrolyte complexes. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|