1
|
Chinapaka R, Prakash SA, Sivaramakrishna D, Kamlekar RK, Swamy MJ. Structure and Characterization of Catanionic Complexes and Biocompatible Vesicles of N-Acyltaurine and Sarcosine Alkyl Ester: Encapsulation and Release Studies with 5-Fluorouracil. ACS APPLIED BIO MATERIALS 2024; 7:5784-5794. [PMID: 39226406 DOI: 10.1021/acsabm.4c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Hydrated dispersions containing equimolar mixtures of cationic and anionic amphiphiles, referred to as catanionic systems, exhibit synergistic physicochemical properties, and mixing single-chain cationic and anionic lipids can lead to the spontaneous formation of vesicles as well as other phase structures. In the present work, we have characterized two catanionic systems prepared by mixing N-acyltaurines (NATs) and sarcosine alkyl esters (SAEs) bearing 11 and 12 C atoms in the acyl/alkyl chains. Turbidimetric and isothermal titration calorimetric studies revealed that both NATs form equimolar complexes with SAEs having matching acyl/alkyl chains. The three-dimensional structure of the sarcosine lauryl ester (lauryl sarcosinate, LS)-N-lauroyltaurine (NLT) equimolar complex has been determined by single-crystal X-ray diffraction. The LS-NLT equimolar complex is stabilized by electrostatic attraction and multiple hydrogen bonds, including classical, strong N-H···O hydrogen bonds as well as several C-H···O hydrogen bonds between the two amphiphiles. DSC studies showed that both equimolar complexes show single sharp phase transitions. Transmission electron microscopy and dynamic light scattering studies have demonstrated that the LS-NLT catanionic complex assemblies yield stable medium-sized vesicles (diameter 280-350 nm). These liposomes were disrupted at high pH, suggesting that the designed catanionic complexes can be used to develop base-labile drug delivery systems. In vitro studies with these catanionic liposomes showed efficient entrapment (73% loading) and release of the anticancer drug 5-fluorouracil in the physiologically relevant pH range of 6.0-8.0. The release rate was highest at pH 8.0, reaching about 78%, 90%, and 100% drug release at 2, 6, and 12 h, respectively. These observations indicate that LS-NLT catanionic vesicles will be useful for designing drug delivery systems, particularly for targeting organs such as the colon, which are inherently at basic pH.
Collapse
Affiliation(s)
- Ravindar Chinapaka
- School of Chemistry, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Sukanya Arul Prakash
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Dokku Sivaramakrishna
- Department of Chemistry, School of Science, GITAM, Visakhapatnam-530045, Andhra Pradesh, India
| | - Ravi Kanth Kamlekar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
- IGNOU Regional Centre Bijapur, Indi Road, Vijayapura-586101, Karnataka India
| | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad-500046, Telangana, India
| |
Collapse
|
2
|
Fan J, Zhang J, Yang X, Bai L, Zhou Y, Wu Z, Qin Z. Study on the Properties of the Sodium Lauroyl Glycinate and Sodium Lauroyl Lactylate Composite System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:16112-16121. [PMID: 36512764 DOI: 10.1021/acs.langmuir.2c02769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The scientific community has shown a great deal of interest in sodium lauroyl glycine (SLG) and sodium lauroyl lactylate (SLL), two sustainable and eco-friendly substances that are considered as potential bio-friendly alternatives for petrochemical-based amphiphiles. In the present work, the formation of mixed micelle for SLG and SLL surfactant in water was investigated. Meanwhile, the surface interaction and thermodynamic parameters were calculated according to the surface tension curves. The results indicated that at certain ratios, SLG/SLL surfactant mixtures had synergistic effects that could yield higher surface activity and improve application performance. When the mole fraction of SLL (αSLL) was 0.4, γcmc achieved a minimum of 22.6 mN m-1 and displayed the best foaming properties. The mixed solution exhibited the best wetting ability when αSLL was 0.6. While αSLL was 0.8, the mixed solution showed the optimum dynamic adsorption properties. And it was found that the antibacterial property of SLG and SLL could be partially preserved after compounding. These results demonstrated for the first time that the mixed environmentally friendly surfactant SLG and SLL has a promising prospect for use in the personal care, detergent, and cosmetic industries.
Collapse
Affiliation(s)
- Jiamin Fan
- China Research Institute of Daily Chemical Industry, Taiyuan030001, Shanxi, P. R. China
| | - Jun Zhang
- China Research Institute of Daily Chemical Industry, Taiyuan030001, Shanxi, P. R. China
| | - Xiuquan Yang
- China Research Institute of Daily Chemical Industry, Taiyuan030001, Shanxi, P. R. China
| | - Liang Bai
- China Research Institute of Daily Chemical Industry, Taiyuan030001, Shanxi, P. R. China
| | - Yuan Zhou
- China Research Institute of Daily Chemical Industry, Taiyuan030001, Shanxi, P. R. China
| | - Zhiyu Wu
- China Research Institute of Daily Chemical Industry, Taiyuan030001, Shanxi, P. R. China
| | - Ziyu Qin
- China Research Institute of Daily Chemical Industry, Taiyuan030001, Shanxi, P. R. China
| |
Collapse
|
3
|
Arif R, Nadeem M, Rizvi MMA, Shaheen A. Synthesis, Self‐Aggregation, Interfacial Behavior and Interaction Studies of Non‐ Cytotoxic Caffeinium‐Based Surface Active Ionic Liquids with Sodium Dodecyl Sulfate. ChemistrySelect 2022. [DOI: 10.1002/slct.202202689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rabia Arif
- Department of Chemistry Aligarh Muslim University Aligarh 202002 India
| | - Masood Nadeem
- Department of Biosciences, Genome Biology Lab Jamia Millia Islamia New Delhi 110025 India
| | - M. Moshahid Alam Rizvi
- Department of Biosciences, Genome Biology Lab Jamia Millia Islamia New Delhi 110025 India
| | - Arifa Shaheen
- Department of Chemistry Aligarh Muslim University Aligarh 202002 India
| |
Collapse
|
4
|
Ravindar C, Reddy ST, Sivaramakrishna D, Damera DP, Swamy MJ. Base-triggerable lauryl sarcosinate-dodecyl sulfate catanionic liposomes: structure, biophysical characterization, and drug entrapment/release studies. SOFT MATTER 2022; 18:7814-7826. [PMID: 36196686 DOI: 10.1039/d2sm00965j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Equimolar mixtures of oppositely charged single-chain amphiphiles form a variety of phases, including vesicles. Such catanionic mixed lipid systems show high stability and exhibit versatile physicochemical properties. In the present study we have investigated the aggregation behaviour of lauryl sarcosinate hydrochloride (LS·HCl) in aqueous dispersion as well as its interaction with the anionic surfactant sodium dodecyl sulfate (SDS). The CMC of LS·HCl was estimated to be ∼5 mM by isothermal titration calorimetry (ITC) and fluorescence spectroscopy using pyrene as the fluorescent probe. Turbidimetric and ITC studies on the interaction of LS·HCl with SDS demonstrated that the two surfactants form an equimolar catanionic complex. The crystal structure of the lauryl sarcosinate-dodecyl sulfate (LS-DS) complex revealed that the complex is stabilized by classical N-H⋯O as well as C-H⋯O hydrogen bonds, besides the electrostatic attraction between LS (cation) and DS (anion) and dispersion interactions between the hydrocarbon chains. Differential scanning calorimetry studies revealed that the phase transition of the equimolar LS-DS complex is significantly reduced compared to the analogous LG-DS and LA-DS complexes in the fully hydrated state. Dynamic light scattering, atomic force microscopy and transmission electron microscopy studies demonstrated that the LS-DS catanionic complex forms stable medium-sized vesicles (diameter of ∼300-500 nm). In vitro studies with 5-fluorouracil and rhodamine 6G showed efficient entrapment and release of these two anti-cancer drugs in the physiologically relevant pH range of 6.0-8.0, but with contrasting pH dependences. These observations indicate that LS-DS catanionic vesicles may find application in designing drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
5
|
Kashapov RR, Mirgorodskaya AB, Kuznetsov DM, Razuvaeva YS, Zakharova LY. Nanosized Supramolecular Systems: From Colloidal Surfactants to Amphiphilic Macrocycles and Superamphiphiles. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Surface Active Ionic Liquids Based Coatings as Subaerial Anti-Biofilms for Stone Built Cultural Heritage. COATINGS 2020. [DOI: 10.3390/coatings11010026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New surface active ionic liquids (SAILs), based on cholinium cations and dodecylbenzenesulfonate as anion, have been synthesized and their potential application as antimicrobial colonization agents on cultural heritage (CH)stone materials investigated. The biocidal activity and antifouling capabilities were, preliminarily, evaluated by a screening on pure Gram (+) and Gram (−) bacteria strain cultures, yeasts, hyphomycetes and single-celled algae. Tests on stone materials (marble and tufa) vs. a stabilized community, constituted by a mixture of microbial strains, revealed that some SAILs display both antimicrobial and preventive antibiofilm action against new colonization. Analogous tests have been performed on the cholinium@halide precursors.
Collapse
|
7
|
Garcia MT, Ribosa I, Gonzalez JJ, Comelles F. Catanionic mixtures of surface-active ionic liquids and N-lauroyl sarcosinate: Surface adsorption, aggregation behavior and microbial toxicity. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Hobson JJ, Curley P, Savage AC, Al-Khouja A, Siccardi M, Flexner C, Meyers CF, Owen A, Rannard SP. Anhydrous nanoprecipitation for the preparation of nanodispersions of tenofovir disoproxil fumarate in oils as candidate long-acting injectable depot formulations. NANOSCALE ADVANCES 2019; 1:4301-4307. [PMID: 36134394 PMCID: PMC9417103 DOI: 10.1039/c9na00529c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/07/2019] [Indexed: 06/16/2023]
Abstract
The facile formation of drug nanoparticles in injectable/ingestible oils, of water-soluble antiretroviral tenofovir disoproxil fumarate, using a novel nanoprecipitation is presented with studies showing drug release into relevant aqueous media.
Collapse
Affiliation(s)
- James J Hobson
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Paul Curley
- Department of Molecular and Clinical Pharmacology, University of Liverpool Block H, 70 Pembroke Place Liverpool L69 3GF UK
| | - Alison C Savage
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Amer Al-Khouja
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine 725 North Wolfe St. Baltimore MD 21205 USA
| | - Marco Siccardi
- Department of Molecular and Clinical Pharmacology, University of Liverpool Block H, 70 Pembroke Place Liverpool L69 3GF UK
| | - Charles Flexner
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine 725 North Wolfe St. Baltimore MD 21205 USA
- Department of Medicine, The Johns Hopkins University School of Medicine 575 Osler Building, 600 N. Wolfe St. Baltimore MD 21287 USA
| | - Caren Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine 725 North Wolfe St. Baltimore MD 21205 USA
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, University of Liverpool Block H, 70 Pembroke Place Liverpool L69 3GF UK
| | - Steve P Rannard
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
9
|
Meira RZC, Biscaia IFB, Nogueira C, Murakami FS, Bernardi LS, Oliveira PR. Solid-State Characterization and Compatibility Studies of Penciclovir, Lysine Hydrochloride, and Pharmaceutical Excipients. MATERIALS 2019; 12:ma12193154. [PMID: 31569620 PMCID: PMC6803830 DOI: 10.3390/ma12193154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022]
Abstract
The physical and chemical characterization of the solid-state properties of drugs and excipients is fundamental for planning new formulations and developing new strategies for the treatment of diseases. Techniques such as differential scanning calorimetry, thermogravimetry, X-ray powder diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy are among the most commonly used techniques for these purposes. Penciclovir and lysine are individually used to treat the herpes virus. As such, the development of a formulation containing both drugs may have therapeutic potential. Solid-state characterization showed that both penciclovir and lysine were crystalline materials with melting points at 278.27 °C and 260.91 °C, respectively. Compatibility studies of penciclovir and lysine indicated a possible interaction between these substances, as evidenced by a single melting point at 253.10 °C. The compatibility of several excipients, including ethylenediaminetetraacetic acid, cetostearyl alcohol, sodium lauryl sulphate, di-tert-butyl methyl phenol, liquid petrolatum, methylparaben, nonionic wax, paraffin, propylene glycol, and propylparaben, was evaluated in ternary (penciclovir-lysine-excipient) mixtures (1:1:1, w/w/w) to determine the optimal formulation. The developed formulation was stable under accelerated and ambient conditions, which demonstrated that the interaction between penciclovir and lysine was suitable for the development of a formulation containing both drugs.
Collapse
Affiliation(s)
- Rafaela Z C Meira
- Post Graduation Program in Pharmaceutical Sciences, Department of Pharmacy, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, PR 85040-080, Brazil
| | - Isabela F B Biscaia
- Post Graduation Program in Pharmaceutical Sciences, Department of Pharmacy, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, PR 85040-080, Brazil
| | - Camila Nogueira
- Post Graduation Program in Pharmaceutical Sciences, Department of Pharmacy, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, PR 85040-080, Brazil
| | - Fabio S Murakami
- Department of Pharmacy, Federal University of Paraná, Av. Prefeito Lothário Meissner, 632, Jardim Botânico, Curitiba, PR 80210-170, Brazil
| | - Larissa S Bernardi
- Post Graduation Program in Pharmaceutical Sciences, Department of Pharmacy, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, PR 85040-080, Brazil
| | - Paulo R Oliveira
- Post Graduation Program in Pharmaceutical Sciences, Department of Pharmacy, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, PR 85040-080, Brazil.
| |
Collapse
|
10
|
Richard C, Souloumiac E, Jestin J, Blanzat M, Cassel S. Influence of dermal formulation additives on the physicochemical characteristics of catanionic vesicles. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
A green and easy synthesis method of catanionic surfactant ammonium benzenesulfonate and its surface properties and aggregation behaviors. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|