1
|
Sunazuka Y, Ueda K, Higashi K, Wada K, Moribe K. Mechanistic Analysis of Temperature-Dependent Curcumin Release from Poly(lactic-co-glycolic acid)/Poly(lactic acid) Polymer Nanoparticles. Mol Pharm 2024; 21:1424-1435. [PMID: 38324797 DOI: 10.1021/acs.molpharmaceut.3c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
In this study, we investigated the mechanism of curcumin (CUR) release from poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) nanoparticles (NPs) by evaluating the temperature-dependent CUR release. NPs were prepared by the nanoprecipitation method using various PLGA/PLA polymers with different lactic:glycolic ratios (L:G ratios) and molecular weights. Increasing the polymer molecular weight resulted in a decrease in the particle size of NPs. The wet glass transition temperature (Tg) of PLGA/PLA NPs was lower than the intrinsic polymer Tg, which can be derived from the water absorption and nanosizing of the polymer. The reduction in Tg was more significant for the PLGA/PLA NPs with lower polymer L:G ratios and lower polymer molecular weight. The greater decrease of Tg in the lower polymer L:G ratios was possibly caused by the higher water absorption due to the more hydrophilic nature of the glycolic acid segment than that of the lactic acid segment. The efficient water absorption in PLGA/PLA NPs with lower molecular weight could cause a significant reduction of Tg as it has lower hydrophobicity. CUR release tests from the PLGA/PLA NPs exhibited enhanced CUR release with increasing temperatures, irrespective of polymer species. By fitting the CUR release profiles into mathematical models, the CUR release process was well described by an initial burst release followed by a diffusion-controlled release. The wet Tg and particle size of the PLGA/PLA NPs affected the amount and temperature dependence of the initial burst release of CUR. Above the wet Tg of NPs, the initial burst release of CUR increased sharply. Smaller particle sizes of PLGA/PLA NPs led to a higher fraction of initial CUR burst release, which was more pronounced above the wet Tg of NPs. The wet Tg and particle sizes of the PLGA/PLA NPs also influenced the diffusion-controlled CUR release. The diffusion rate of CUR in the NPs increased as the wet Tg values of the NPs decreased. The diffusion path length of CUR was affected by the particle size, with larger particle size resulting in a prolonged diffusion-controlled release of CUR. This study highlighted that for the formulation development of PLGA/PLA NPs, suitable PLGA/PLA polymers should be selected considering the physicochemical properties of PLGA/PLA NPs and their correlation with the release behavior of encapsulated drugs at the application temperature.
Collapse
Affiliation(s)
- Yushi Sunazuka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Nippon Boehringer Ingelheim Co. Ltd., 6-7-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Koichi Wada
- Nippon Boehringer Ingelheim Co. Ltd., 6-7-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
2
|
Kouhjani M, Jaafari MR, Kamali H, Abbasi A, Tafaghodi M, Mousavi Shaegh SA. Microfluidic-assisted preparation of PLGA nanoparticles loaded with insulin: a comparison with double emulsion solvent evaporation method. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:306-329. [PMID: 38100556 DOI: 10.1080/09205063.2023.2287247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Poly lactic-co-glycolic acid (PLGA) is an ideal polymer for the delivery of small and macromolecule drugs. Conventional preparation methods of PLGA nanoparticles (NPs) result in poor control over NPs properties. In this research, a microfluidic mixer was designed to produce insulin-loaded PLGA NPs with tuned properties. Importantly; aggregation of the NPs through the mixer was diminished due to the coaxial mixing of the precursors. The micromixer allowed for the production of NPs with small size and narrow size distribution compared to the double emulsion solvent evaporation (DESE) method. Furthermore, encapsulation efficiency and loading capacity indicated a significant increase in optimized NPs produced through the microfluidic method in comparison to DESE method. NPs prepared by the microfluidic method were able to achieve a more reduction of trans-epithelial electrical resistance values in the Caco-2 cells compared to those developed by the DESE technique that leads to greater paracellular permeation. Compatibility and interaction between components were evaluated by differential scanning calorimetry and fourier transform infrared analysis. Also, the effect of NPs on cell toxicity was investigated using MTT test. Numerical simulations were conducted to analyze the effect of mixing patterns on the properties of the NPs. It was revealed that by decreasing flow rate ratio, i.e. flow rate of the organic phase to the flow rate of the aqueous phase, mixing of the two streams increases. As an alternative to the DESE method, high flexibility in modulating hydrodynamic conditions of the microfluidic mixer allowed for nanoassembly of NPs with superior insulin encapsulation at smaller particle sizes.
Collapse
Affiliation(s)
- Maryam Kouhjani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology and Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Abbasi
- Laboratory of Microfluidics and Medical Microsystems, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Nanotechnology and Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Unit, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Yao Y, Wu T, Pan L, Yan S, Yu S, Chen S. The evaluation of four nano-formulations loaded-Elsinochrome A on characteristics and in vitro cytotoxicity effect. J Biomater Appl 2024; 38:834-847. [PMID: 38154025 DOI: 10.1177/08853282231225559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Elsinochrome A (EA) is a naturally occurring photosensitizer with potential applications in photodynamic therapy (PDT) for various malignancies. Despite its promising therapeutic properties, the poor solubility of EA hampers its effective utilization in clinical settings. To circumvent this limitation, we engineered four distinct nano-formulations: PLGA/EA nanoparticles (NPs), CMC-PLGA/EA NPs, mPEG-PCL/EA nanomicelles (NMs), and LHP-CHOL/EA nanoliposomes (NLs), all designed to enhance the solubility of EA. A comparative evaluation of these formulations, based on metrics such as particle size, Zeta potential, drug loading efficiency, and encapsulation efficiency, identified PLGA/EA NPs and mPEG-PCL/EA NMs as the most efficacious candidates. Subsequent in vitro investigations into the drug release kinetics under varying pH conditions and the impact on cell viability and apoptosis in A549 and MCF-7 cell lines were conducted. Remarkably, the maximum drug release for PLGA/EA NPs and mPEG-PCL/EA NMs was recorded at 62.5% and 70.8% in an acidic environment (pH 5.7), respectively. Upon exposure to 460 nm light, PLGA/EA NPs induced a significant reduction in A549 cell viability to 13.8% and an apoptosis rate of 93.8%, whereas mPEG-PCL/EA NMs elicited a decrease in MCF-7 cell viability to 12.8% and an apoptosis rate of 73.0%.
Collapse
Affiliation(s)
- Yuanyuan Yao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Tianlong Wu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lili Pan
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuzhen Yan
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuqin Yu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuanglin Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Luo T, Huang W, Chu F, Zhu T, Feng B, Huang S, Hou J, Zhu L, Zhu S, Zeng W. The Dawn of a New Era: Tumor-Targeting Boron Agents for Neutron Capture Therapy. Mol Pharm 2023; 20:4942-4970. [PMID: 37728998 DOI: 10.1021/acs.molpharmaceut.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cancer is widely recognized as one of the most devastating diseases, necessitating the development of intelligent diagnostic techniques, targeted treatments, and early prognosis evaluation to ensure effective and personalized therapy. Conventional treatments, unfortunately, suffer from limitations and an increased risk of severe complications. In light of these challenges, boron neutron capture therapy (BNCT) has emerged as a promising approach for cancer treatment with unprecedented precision to selectively eliminate tumor cells. The distinctive and promising characteristics of BNCT hold the potential to revolutionize the field of oncology. However, the clinical application and advancement of BNCT technology face significant hindrance due to the inherent flaws and limited availability of current clinical drugs, which pose substantial obstacles to the practical implementation and continued progress of BNCT. Consequently, there is an urgent need to develop efficient boron agents with higher boron content and specific tumor-targeting properties. Researchers aim to address this need by integrating tumor-targeting strategies with BNCT, with the ultimate goal of establishing BNCT as an effective, readily available, and cutting-edge treatment modality for cancer. This review delves into the recent advancements in integrating tumor-targeting strategies with BNCT, focusing on the progress made in developing boron agents specifically designed for BNCT. By exploring the current state of BNCT and emphasizing the prospects of tumor-targeting boron agents, this review provides a comprehensive overview of the advancements in BNCT and highlights its potential as a transformative treatment option for cancer.
Collapse
Affiliation(s)
- Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Wenzhi Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Tianyu Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Jing Hou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Liyong Zhu
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shaihong Zhu
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| |
Collapse
|
5
|
Controlled release and targeted drug delivery with poly(lactic-co-glycolic acid) nanoparticles: reviewing two decades of research. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00584-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Optimization of Rifampicin Encapsulation in PLGA Polymeric Reservoirs. Int J Pharm 2022; 622:121844. [DOI: 10.1016/j.ijpharm.2022.121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022]
|
7
|
Glass Transition Temperature of PLGA Particles and the Influence on Drug Delivery Applications. Polymers (Basel) 2022; 14:polym14050993. [PMID: 35267816 PMCID: PMC8912735 DOI: 10.3390/polym14050993] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/31/2022] Open
Abstract
Over recent decades, poly(lactic-co-glycolic acid) (PLGA) based nano- and micro- drug delivery vehicles have been rapidly developed since PLGA was approved by the Food and Drug Administration (FDA). Common factors that influence PLGA particle properties have been extensively studied by researchers, such as particle size, polydispersity index (PDI), surface morphology, zeta potential, and drug loading efficiency. These properties have all been found to be key factors for determining the drug release kinetics of the drug delivery particles. For drug delivery applications the drug release behavior is a critical property, and PLGA drug delivery systems are still plagued with the issue of burst release when a large portion of the drug is suddenly released from the particle rather than the controlled release the particles are designed for. Other properties of the particles can play a role in the drug release behavior, such as the glass transition temperature (Tg). The Tg, however, is an underreported property of current PLGA based drug delivery systems. This review summarizes the basic knowledge of the glass transition temperature in PLGA particles, the factors that influence the Tg, the effect of Tg on drug release behavior, and presents the recent awareness of the influence of Tg on drug delivery applications.
Collapse
|
8
|
Chiang CW, Chien YC, Yu WJ, Ho CY, Wang CY, Wang TW, Chiang CS, Keng PY. Polymer-Coated Nanoparticles for Therapeutic and Diagnostic Non- 10B Enriched Polymer-Coated Boron Carbon Oxynitride (BCNO) Nanoparticles as Potent BNCT Drug. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2936. [PMID: 34835699 PMCID: PMC8618246 DOI: 10.3390/nano11112936] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
Boron neutron capture therapy (BNCT) is a powerful and selective anti-cancer therapy utilizing 10B-enriched boron drugs. However, clinical advancement of BCNT is hampered by the insufficient loading of B-10 drugs throughout the solid tumor. Furthermore, the preparation of boron drugs for BNCT relies on the use of the costly B-10 enriched precursor. To overcome these challenges, polymer-coated boron carbon oxynitride (BCNO) nanoparticles, with ~30% of boron, were developed with enhanced biocompatibility, cell uptake, and tumoricidal effect via BNCT. Using the ALTS1C1 cancer cell line, the IC50 of the PEG@BCNO, bare, PEI@BCNO were determined to be 0.3 mg/mL, 0.1 mg/mL, and 0.05 mg/mL, respectively. As a proof-of-concept, the engineered non-10B enriched polymer-coated BCNO exhibited excellent anti-tumor effect via BNCT due to their high boron content per nanoparticle and due to the enhanced cellular internalization and retention compared to small molecular 10B-BPA drug. The astrocytoma ALTS1C1 cells treated with bare, polyethyleneimine-, and polyethylene glycol-coated BCNO exhibited an acute cell death of 24, 37, and 43%, respectively, upon 30 min of neutron irradiation compared to the negligible cell death in PBS-treated and non-irradiated cells. The radical approach proposed in this study addresses the expensive and complex issues of B-10 isotope enrichment process; thus, enabling the preparation of boron drugs at a significantly lower cost, which will facilitate the development of boron drugs for BNCT.
Collapse
Affiliation(s)
- Chen-Wei Chiang
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan; (C.-W.C.); (Y.-C.C.); (C.-Y.H.); (C.-Y.W.); (T.-W.W.)
| | - Yun-Chen Chien
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan; (C.-W.C.); (Y.-C.C.); (C.-Y.H.); (C.-Y.W.); (T.-W.W.)
| | - Wen-Jui Yu
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu City 300, Taiwan; (W.-J.Y.); (C.-S.C.)
| | - Chia-Yu Ho
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan; (C.-W.C.); (Y.-C.C.); (C.-Y.H.); (C.-Y.W.); (T.-W.W.)
| | - Chih-Yi Wang
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan; (C.-W.C.); (Y.-C.C.); (C.-Y.H.); (C.-Y.W.); (T.-W.W.)
| | - Tzu-Wei Wang
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan; (C.-W.C.); (Y.-C.C.); (C.-Y.H.); (C.-Y.W.); (T.-W.W.)
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu City 300, Taiwan; (W.-J.Y.); (C.-S.C.)
| | - Pei-Yuin Keng
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan; (C.-W.C.); (Y.-C.C.); (C.-Y.H.); (C.-Y.W.); (T.-W.W.)
| |
Collapse
|
9
|
Zeeshan M, Ali H, Ain QU, Mukhtar M, Gul R, Sarwar A, Khan S. A holistic QBD approach to design galactose conjugated PLGA polymer and nanoparticles to catch macrophages during intestinal inflammation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112183. [PMID: 34082983 DOI: 10.1016/j.msec.2021.112183] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Recruited macrophages in inflammation attract various ligand-receptor drug delivery approaches. Galactose bound nanocarriers are promising to catch macrophages because of surface-expressed macrophage galactose type-lectin-C (MGL-2) receptor. The present study reported fabrication of galactose conjugated PLGA (GAL-PLGA) polymer and nanoparticles under quality by design (QBD) approach to investigate macrophages targeting potential at inflamed intestine. GAL-PLGA nanoparticles were fabricated through O/W emulsion-evaporation method under QBD approach and Box-Behnken design. Obtained GAL-PLGA nanoparticles have optimum particle size (~118 nm), drug entrapment (87%) and zeta potential (-9.5). TGA, XPRD and FTIR confirmed stability and negate drug-polymer interactions. Further, nanoparticles have considerable hemocompatibility, biocompatibility and cellular uptake; macrophage uptake was inhibited by D-galactose confirming involvement of MGL-2. Moreover, drug retention studies in the DSS-colitis model provide background for potential of nanoparticles to target and reside inflamed intestine. It is concluded that GAL-PLGA nanoparticles are suitable platform to target macrophages at the inflamed intestine through oral route.
Collapse
Affiliation(s)
- Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Qurat Ul Ain
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged 6720, Hungary
| | - Rabia Gul
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Atif Sarwar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
10
|
Park K, Otte A, Sharifi F, Garner J, Skidmore S, Park H, Jhon YK, Qin B, Wang Y. Potential Roles of the Glass Transition Temperature of PLGA Microparticles in Drug Release Kinetics. Mol Pharm 2020; 18:18-32. [PMID: 33331774 DOI: 10.1021/acs.molpharmaceut.0c01089] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) has been used for long-acting injectable drug delivery systems for more than 30 years. The factors affecting the properties of PLGA formulations are still not clearly understood. The drug release kinetics of PLGA microparticles are influenced by many parameters associated with the formulation composition, manufacturing process, and post-treatments. Since the drug release kinetics have not been explainable using the measurable properties, formulating PLGA microparticles with desired drug release kinetics has been extremely difficult. Of the various properties, the glass transition temperature, Tg, of PLGA formulations is able to explain various aspects of drug release kinetics. This allows examination of parameters that affect the Tg of PLGA formulations, and thus, affecting the drug release kinetics. The impacts of the terminal sterilization on the Tg and drug release kinetics were also examined. The analysis of drug release kinetics in relation to the Tg of PLGA formulations provides a basis for further understanding of the factors controlling drug release.
Collapse
Affiliation(s)
- Kinam Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.,College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States.,Akina, Inc., West Lafayette, Indiana 47906, United States
| | - Andrew Otte
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Farrokh Sharifi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - John Garner
- Akina, Inc., West Lafayette, Indiana 47906, United States
| | - Sarah Skidmore
- Akina, Inc., West Lafayette, Indiana 47906, United States
| | - Haesun Park
- Akina, Inc., West Lafayette, Indiana 47906, United States
| | - Young Kuk Jhon
- Office of Pharmaceutical Quality, Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland 20993, United States
| | - Bin Qin
- Office of Generic Drugs, Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland 20993, United States
| | - Yan Wang
- Office of Generic Drugs, Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland 20993, United States
| |
Collapse
|
11
|
Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater 2020; 9:153-174. [PMID: 33058072 PMCID: PMC7718366 DOI: 10.1007/s40204-020-00139-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric microparticles (MPs) are recognized as very popular carriers to increase the bioavailability and bio-distribution of both lipophilic and hydrophilic drugs. Among different kinds of polymers, poly-(lactic-co-glycolic acid) (PLGA) is one of the most accepted materials for this purpose, because of its biodegradability (due to the presence of ester linkages that are degraded by hydrolysis in aqueous environments) and safety (PLGA is a Food and Drug Administration (FDA)-approved compound). Moreover, its biodegradability depends on the number of glycolide units present in the structure, indeed, lower glycol content results in an increased degradation time and conversely a higher monomer unit number results in a decreased time. Due to this feature, it is possible to design and fabricate MPs with a programmable and time-controlled drug release. Many approaches and procedures can be used to prepare MPs. The chosen fabrication methodology influences size, stability, entrapment efficiency, and MPs release kinetics. For example, lipophilic drugs as chemotherapeutic agents (doxorubicin), anti-inflammatory non-steroidal (indomethacin), and nutraceuticals (curcumin) were successfully encapsulated in MPs prepared by single emulsion technique, while water-soluble compounds, such as aptamer, peptides and proteins, involved the use of double emulsion systems to provide a hydrophilic compartment and prevent molecular degradation. The purpose of this review is to provide an overview about the preparation and characterization of drug-loaded PLGA MPs obtained by single, double emulsion and microfluidic techniques, and their current applications in the pharmaceutical industry.Graphic abstract.
Collapse
Affiliation(s)
- Elena Lagreca
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| |
Collapse
|
12
|
Takeuchi I, Kagawa A, Makino K. Skin permeability and transdermal delivery route of 30-nm cyclosporin A-loaded nanoparticles using PLGA-PEG-PLGA triblock copolymer. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Di Natale C, Onesto V, Lagreca E, Vecchione R, Netti PA. Tunable Release of Curcumin with an In Silico-Supported Approach from Mixtures of Highly Porous PLGA Microparticles. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1807. [PMID: 32290458 PMCID: PMC7215757 DOI: 10.3390/ma13081807] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
In recent years, drug delivery systems have become some of the main topics within the biomedical field. In this scenario, polymeric microparticles (MPs) are often used as carriers to improve drug stability and drug pharmacokinetics in agreement with this kind of treatment. To avoid a mere and time-consuming empirical approach for the optimization of the pharmacokinetics of an MP-based formulation, here, we propose a simple predictive in silico-supported approach. As an example, in this study, we report the ability to predict and tune the release of curcumin (CUR), used as a model drug, from a designed combination of different poly(d,l-lactide-co-glycolide) (PLGA) MPs kinds. In detail, all CUR-PLGA MPs were synthesized by double emulsion technique and their chemical-physical properties were characterized by Mastersizer and scanning electron microscopy (SEM). Moreover, for all the MPs, CUR encapsulation efficiency and kinetic release were investigated through the UV-vis spectroscopy. This approach, based on the combination of in silico and experimental methods, could be a promising platform in several biomedical applications such as vaccinations, cancer-treatment, diabetes therapy and so on.
Collapse
Affiliation(s)
- Concetta Di Natale
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
| | - Elena Lagreca
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
| |
Collapse
|
14
|
Far J, Abdel-Haq M, Gruber M, Abu Ammar A. Developing Biodegradable Nanoparticles Loaded with Mometasone Furoate for Potential Nasal Drug Delivery. ACS OMEGA 2020; 5:7432-7439. [PMID: 32280885 PMCID: PMC7144157 DOI: 10.1021/acsomega.0c00111] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/16/2020] [Indexed: 05/30/2023]
Abstract
Intranasal drug administration is considered a routine in the treatment of many nasal conditions including chronic rhinosinusitis (CRS), which is a common disease involving long-term inflammation of the nasal mucosa. Topical nasal steroid treatment is safe and easy to use and plays a basic role in both nonsurgical and surgical treatments for CRS. Intranasal steroid therapy for various time intervals is commonly used before and after endoscopic CRS nasal surgeries to reduce inflammation and edema and to improve mucosal healing. The medication is currently administered via conventional nasal sprays; therefore, there is an incentive to develop more efficient drug delivery systems for the controlled release of topical steroids into the sinonasal cavities over a prolonged period of time. In this study, poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with mometasone furoate (MF) were generated using the nanoprecipitation method and characterized physicochemically and morphologically. MF NPs exhibited adequate physicochemical properties and high drug encapsulation efficiency and loading content. MF exhibited sustained release from NPs over 7 days in vitro with an initial burst release; various mathematical models were applied to determine the kinetics of drug release. Having demonstrated the ability to load MF in PLGA-NPs using the nanoprecipitation method for the first time, these NPs urge the need for additional investigations to demonstrate their therapeutic potential in nasal delivery applications.
Collapse
Affiliation(s)
- Jumana Far
- Department
of Pharmaceutical Engineering, Azrieli College
of Engineering Jerusalem, Jerusalem 9103501, Israel
| | - Muhammad Abdel-Haq
- Department
of Pharmaceutical Engineering, Azrieli College
of Engineering Jerusalem, Jerusalem 9103501, Israel
| | - Maayan Gruber
- Department
of Otolaryngology−Head and Neck Surgery, Galilee Medical Center, Nahariya 2210001, Israel
- Faculty
of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel
| | - Aiman Abu Ammar
- Department
of Pharmaceutical Engineering, Azrieli College
of Engineering Jerusalem, Jerusalem 9103501, Israel
| |
Collapse
|
15
|
|
16
|
Almeida KB, Ramos AS, Nunes JB, Silva BO, Ferraz ER, Fernandes AS, Felzenszwalb I, Amaral ACF, Roullin VG, Falcão DQ. PLGA nanoparticles optimized by Box-Behnken for efficient encapsulation of therapeutic Cymbopogon citratus essential oil. Colloids Surf B Biointerfaces 2019; 181:935-942. [DOI: 10.1016/j.colsurfb.2019.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 12/26/2022]
|
17
|
Chishti N, Jagwani S, Dhamecha D, Jalalpure S, Dehghan MH. Preparation, Optimization, and In Vivo Evaluation of Nanoparticle-Based Formulation for Pulmonary Delivery of Anticancer Drug. ACTA ACUST UNITED AC 2019; 55:medicina55060294. [PMID: 31226865 PMCID: PMC6631245 DOI: 10.3390/medicina55060294] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/02/2022]
Abstract
Background and Oobjectives: Lung cancer, a pressing issue in present-day society due to its high prevalence and mortality rate, can be managed effectively by long-term delivery of anticancer agents encapsulated in nanoparticles in the form of inhalable dry powder. This approach is expected to be of strategic importance in the management of lung cancer and is a developing area in current research. In the present investigation, we report on the formulation and characterization of docetaxel inhalable nanoparticles as a viable alternative for effective treatment of non-small cell lung cancer as a long-term delivery choice. Materials and Methods: Poloxamer (PLX-188) coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing docetaxel (DTX-NPs) were prepared by simple oil in water (o/w) single emulsification-solvent evaporation process. The nanoparticles were collected as pellet by centrifugation, dispersed in mannitol solution, and lyophilized to get dry powder. Results: Optimized DTX-NPs were smooth and spherical in morphology, had particle size around 200 nm, zeta potential around −36 mV, and entrapment efficiency of around 60%. The in vitro anticancer assay was assessed and it was observed that nanoparticle-based formulation exhibited enhanced cytotoxicity when compared to the free form of the drug post 48 h. On examining for in vitro drug release, slow but continuous release was seen until 96 h following Higuchi release kinetics. DTX-NPs were able to maintain their desired characteristics when studied at accelerated conditions of stability. Conclusions: In-vivo study indicated that the optimized nanoparticles were well retained in lungs and that the drug level could be maintained for a longer duration if given in the form of DTX-NPs by the pulmonary route. Thus, the non-invasive nature and target specificity of DTX-NPs paves the way for its future use as a pulmonary delivery for treating non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Nazimuddin Chishti
- Wockhardt Research Centre, D-4, M.I.D.C., Chikalthana, Aurangabad (M.S) 431006, India.
| | - Satveer Jagwani
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India.
| | - Dinesh Dhamecha
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India.
| | - Sunil Jalalpure
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India.
- KLE University's College of Pharmacy, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India.
| | - Mohamed Hassan Dehghan
- Department of Pharmaceutics, Y.B. Chavan College of Pharmacy, Zakaria Campus, Aurangabad (M.S) 431001, India.
| |
Collapse
|
18
|
Takeuchi I, Onaka H, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous injection: Effects of PEGylation at the same particle size. Biomed Mater Eng 2018; 29:205-215. [PMID: 29457594 DOI: 10.3233/bme-171723] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recently, polyethylene glycol (PEG) modified gold nanoparticles have been studied to maintaining long-term stability in biological fluids. Its biodistribution was also reported, however, comparison of bare gold nanoparticles and PEGylated gold nanoparticles with equal particle size is not sufficient. OBJECTIVE We prepared bare gold nanoparticles and PEGylated gold nanoparticles with diameters of 20-30-nm or 50-nm to avoid the influence of particle diameter, and studied their biodistribution in the mouse. METHODS Gold concentrations in brain, heart, lungs, liver, stomach, pancreas, spleen, kidneys, blood, urine, and feces were measured at 0.5, 1, 2, 3, 6, 12, 18, 24, and 48 h after administration of gold nanoparticles using inductively coupled plasma atomic emission spectrometry. RESULTS At 48 h after intravenous administration, accumulation in the liver and spleen was significantly reduced by PEGylation, and the gold amounts of PEGylated gold nanoparticles with diameters of 20-30 nm and 50-nm in the brain were 3.6 times and 2.7 times higher than those of bare gold nanoparticles, respectively. CONCLUSIONS These results indicated that the usefulness of PEGylated gold nanoparticles with small particle size for a drug carrier.
Collapse
Affiliation(s)
- Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan.,Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan.,Center for Physical Pharmaceutics, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Haruhiko Onaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan.,Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan.,Center for Physical Pharmaceutics, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
19
|
Luss AL, Kulikov PP, Romme SB, Andersen CL, Pennisi CP, Docea AO, Kuskov AN, Velonia K, Mezhuev YO, Shtilman MI, Tsatsakis AM, Gurevich L. Nanosized carriers based on amphiphilic poly-N-vinyl-2-pyrrolidone for intranuclear drug delivery. Nanomedicine (Lond) 2018; 13:703-715. [DOI: 10.2217/nnm-2017-0311] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: Ability to deliver drugs into the cell nuclei can significantly increase the efficacy of cancer therapies, in particular in the case of multidrug-resistant cancer Results: Polymer nanocarriers based on amphiphilic thiooctadecyl-terminated poly-N-vinyl-2-pyrrolidone were produced and loaded with a model hydrophobic drug, curcumin. Two commonly used loading approaches – emulsification and ultrasonic dispersion – were found to lead to two different size distributions with distinctively different biological effect. While nanocarriers produced via the emulsion method penetrated cells by dynamin-dependent endocytic mechanisms, sub-100 nm dispersion-produced nanocarriers were capable of crossing the membranes via biologically independent mechanisms. Conclusion: This finding opens an intriguing possibility of intranuclear delivery by merely tailoring the size of polymeric carriers, thus promising a new approach for cancer therapies.
Collapse
Affiliation(s)
- Anna L Luss
- Department of Biomaterials, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq 9, 125047 Moscow, Russia
| | - Pavel P Kulikov
- Department of Biomaterials, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq 9, 125047 Moscow, Russia
| | - Sven B Romme
- Department of Materials & Production, Aalborg University, Skjernvej 4A, 9220, Aalborg, Denmark
| | - Camilla L Andersen
- Department of Materials & Production, Aalborg University, Skjernvej 4A, 9220, Aalborg, Denmark
| | - Cristian P Pennisi
- Department of Health Science & Technology, Aalborg University, Fredrik Bajers Vej 3, 9220, Aalborg, Denmark
| | - Anca O Docea
- Department of Toxicology, Faculty of Pharmacy, University of Medicine & Pharmacy, 2 Petru Rares, 200349, Craiova, Romania
| | - Andrey N Kuskov
- Department of Biomaterials, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq 9, 125047 Moscow, Russia
| | - Kelly Velonia
- Department of Materials Science & Technology, School of Sciences & Engineering, University of Crete, University Campus Voutes, 71003 Heraklion, Crete, Greece
| | - Yaroslav O Mezhuev
- Department of Biomaterials, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq 9, 125047 Moscow, Russia
| | - Mikhail I Shtilman
- Department of Biomaterials, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq 9, 125047 Moscow, Russia
- Bauman Moscow State Technical University, Center Composites of Russia, 2nd Baumanskaya 5, 105005 Moscow, Russia
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion Crete 71003, Greece
- Bauman Moscow State Technical University, Center Composites of Russia, 2nd Baumanskaya 5, 105005 Moscow, Russia
| | - Leonid Gurevich
- Department of Materials & Production, Aalborg University, Skjernvej 4A, 9220, Aalborg, Denmark
| |
Collapse
|
20
|
Takeuchi I, Hida Y, Makino K. Minoxidil-encapsulated poly(L-lactide-co-glycolide) nanoparticles with hair follicle delivery properties prepared using W/O/W solvent evaporation and sonication. Biomed Mater Eng 2018; 29:217-228. [DOI: 10.3233/bme-171724] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
- Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
- Center for Physical Pharmaceutics, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yukari Hida
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
- Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
- Center for Physical Pharmaceutics, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
21
|
Nii T, Takeuchi I, Kimura Y, Makino K. Effects of the conformation of PLGA molecules in the organic solvent on the aerodynamic diameter of spray dried microparticles. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.12.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Martins C, Araújo F, Gomes MJ, Fernandes C, Nunes R, Li W, Santos HA, Borges F, Sarmento B. Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy. Eur J Pharm Biopharm 2018; 138:111-124. [PMID: 29397261 DOI: 10.1016/j.ejpb.2018.01.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
The human immunodeficiency virus (HIV) uses the brain as reservoir, which turns it as a promising target to fight this pathology. Nanoparticles (NPs) of poly(lactic-co-glycolic) acid (PLGA) are potential carriers of anti-HIV drugs to the brain, since most of these antiretrovirals, as efavirenz (EFV), cannot surpass the blood-brain barrier (BBB). Forasmuch as the conventional production methods lack precise control over the final properties of particles, microfluidics emerged as a prospective alternative. This study aimed at developing EFV-loaded PLGA NPs through a conventional and microfluidic method, targeted to the BBB, in order to treat HIV neuropathology. Compared to the conventional method, NPs produced through microfluidics presented reduced size (73 nm versus 133 nm), comparable polydispersity (around 0.090), less negative zeta-potential (-14.1 mV versus -28.0 mV), higher EFV association efficiency (80.7% versus 32.7%) and higher drug loading (10.8% versus 3.2%). The microfluidics-produced NPs also demonstrated a sustained in vitro EFV release (50% released within the first 24 h). NPs functionalization with a transferrin receptor-binding peptide, envisaging BBB targeting, proved to be effective concerning nuclear magnetic resonance analysis (δ = -0.008 ppm; δ = -0.017 ppm). NPs demonstrated to be safe to BBB endothelial and neuron cells (metabolic activity above 70%), as well as non-hemolytic (1-2% of hemolysis, no morphological alterations on erythrocytes). Finally, functionalized nanosystems were able to interact more efficiently with BBB cells, and permeability of EFV associated with NPs through a BBB in vitro model was around 1.3-fold higher than the free drug.
Collapse
Affiliation(s)
- Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Francisca Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria João Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carlos Fernandes
- CIQUP - Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Rute Nunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, FI-00014 Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, FI-00014 Helsinki, Finland; HiLIFE - Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland
| | - Fernanda Borges
- CIQUP - Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
23
|
Takeuchi I, Taniguchi Y, Tamura Y, Ochiai K, Makino K. Effects of l-leucine on PLGA microparticles for pulmonary administration prepared using spray drying: Fine particle fraction and phagocytotic ratio of alveolar macrophages. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Takeuchi I, Takeshita T, Suzuki T, Makino K. Iontophoretic transdermal delivery using chitosan-coated PLGA nanoparticles for positively charged drugs. Colloids Surf B Biointerfaces 2017; 160:520-526. [PMID: 29017147 DOI: 10.1016/j.colsurfb.2017.10.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/07/2017] [Accepted: 10/03/2017] [Indexed: 02/07/2023]
Abstract
Recently, poly(dl-lactide-co-glycolide) (PLGA) nanoparticles prepared using a combination of an antisolvent diffusion method with preferential solvation was shown to be beneficial for the iontophoretic transdermal delivery of therapeutic agents. Also, this preparation method can contain a hydrophilic drug. However, since PLGA nanoparticles were negatively charged, it was difficult to apply iontophoresis for positively charged hydrophilic drugs. In this study, we prepared positively charged PLGA nanoparticles containing donepezil hydrochloride (DP). DP was used as a positively charged hydrophilic drug model. The PLGA nanoparticles were coated with chitosan hydroxypropyltrimonium chloride. The average particle diameter of the nanoparticles was 117.7±60.6nm and the surface charge number density changed from negative to positive. Ex vivo skin accumulation study was carried out using abdominal rat skin and a Franz-type diffusion cell with/without iontophoresis. When iontophoresis was applied, the DP concentration in the rat skin of chitosan-coated PLGA nanoparticles was 2.2 times higher than that of non-coated PLGA nanoparticles. This indicated that chitosan-coated PLGA nanoparticles were suitable for iontophoresis. To investigate the transdermal delivery route of the nanoparticles, we prepared chitosan-coated PLGA nanoparticles containing DP, coumarin-6, and rhodamine 6G. Coumarin-6 and rhodamine 6G were used as a trace marker of the PLGA nanoparticles and positively charged hydrophilic drug model, respectively. From the results of ex vivo accumulation test of this fluorescent nanoparticles, it was suggested that positively charged hydrophilic drugs reached the hair follicles as a nanoparticle, and then they were released from the nanoparticles.
Collapse
Affiliation(s)
- Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan; Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan; Center for Physical Pharmaceutics, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tomoyoshi Takeshita
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takaaki Suzuki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan; Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan; Center for Physical Pharmaceutics, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
25
|
Drug release behavior of hydrophobic drug-loaded poly (lactide-co-glycolide) nanoparticles: Effects of glass transition temperature. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.04.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Takeuchi I, Suzuki T, Makino K. Skin permeability and transdermal delivery route of 50-nm indomethacin-loaded PLGA nanoparticles. Colloids Surf B Biointerfaces 2017; 159:312-317. [PMID: 28858661 DOI: 10.1016/j.colsurfb.2017.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/27/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
Abstract
Recently, nano-seized systems for transdermal delivery have attracted attention. To efficiently deliver drugs to hair follicles, we focused on poly(DL-lactide-co-glycolide) (PLGA) nanoparticles prepared using a combination of an antisolvent diffusion method with preferential solvation. The PLGA nanoparticles prepared using this method are suitable for iontophoresis because of their high surface charge number density. It has been reported that PLGA nanoparticles were delivered to hair follicles by applying iontophoresis, however research on PLGA nanoparticles with a size of less than 100nm was lacking. In this study, we prepared 50-nm and 100-nm PLGA nanoparticles. Indomethacin was used as a hydrophobic drug model and the nanoparticles were evaluated their skin permeability using the abdominal skin of a rat. Two hours after administration, the skin permeation indomethacin amounts of 50-nm and 100-nm PLGA nanoparticles with iontophoresis were significantly higher than those of passively diffused nanoparticles and indomethacin solution. Moreover, when iontophoresis was applied, the indomethacin concentration in the rat skin of 50-nm PLGA nanoparticles was 1.7 times higher than that of 100-nm PLGA nanoparticles. We also prepared coumarin-6-loaded 50-nm and 100-nm PLGA nanoparticles having surface characteristics equivalent to those of indomethacin-loaded PLGA nanoparticles to investigate transdermal delivery route of indomethacin-loaded PLGA nanoparticles. The 50-nm nanoparticles reached a deeper portion of the hair follicle when applying iontophoresis. Therefore, it was shown that this nanoparticle was useful for targeting to hair follicles.
Collapse
Affiliation(s)
- Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan; Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan; Center for Physical Pharmaceutics, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takaaki Suzuki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan; Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan; Center for Physical Pharmaceutics, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
27
|
Takeuchi I, Nomura K, Makino K. Hydrophobic boron compound-loaded poly(l-lactide-co-glycolide) nanoparticles for boron neutron capture therapy. Colloids Surf B Biointerfaces 2017; 159:360-365. [PMID: 28806667 DOI: 10.1016/j.colsurfb.2017.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/27/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
Abstract
Poly(DL-lactide-co-glycolide) (PLGA) has been widely used and studied because of its biocompatibility and biodegradability. Recently, the usefulness of nanoparticles using poly(L-lactide-co-glycolide) (PLLGA) having a higher glass transition temperature than PLGA was suggested. In this study, we investigated the availability of boron compound-loaded PLGA and PLLGA nanoparticles for boron neutron capture therapy (BNCT) by conducting biodistribution study using tumor-bearing mice. o-Carborane, a hydrophobic boron compound, was used as a boron carrier, and o-carborane-albumin conjugate was used as a control. We prepared PLGA and PLLGA nanoparticles with diameters of 100nm and 150nm. In 100-nm PLLGA nanoparticles, the boron concentration in the tumor reached 113.9±15.8μg/g of tissue at 8h after administration. This result indicated that 100-nm PLLGA nanoparticles were able to achieve an intratumoral 10B concentration of 20μg/g without replacing the 11B with 10B. In addition, by nanoparticulation using PLGA7510 and PLLGA7510, intratumoral boron concentration was 1.7-3.2 and 3.5-4.2 times higher than that of the o-carborane-albumin conjugate, respectively. The tumor/blood ratios of boron concentration reached over 5 at 8-12h after injection. Boron atoms in nanoparticles were excreted mainly in the urine, and characteristic accumulation was not observed in other organs. These results suggested that 100-nm PLLGA nanoparticles were particularly useful for BNCT.
Collapse
Affiliation(s)
- Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan; Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan; Center for Physical Pharmaceutics, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kensuke Nomura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan; Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan; Center for Physical Pharmaceutics, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
28
|
Takeuchi I, Nobata S, Oiri N, Tomoda K, Makino K. Biodistribution and excretion of colloidal gold nanoparticles after intravenous injection: Effects of particle size. Biomed Mater Eng 2017; 28:315-323. [DOI: 10.3233/bme-171677] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
- Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
- Center for Physical Pharmaceutics, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sho Nobata
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Naoto Oiri
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Keishiro Tomoda
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
- Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
- Center for Physical Pharmaceutics, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
- Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
- Center for Physical Pharmaceutics, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
29
|
Takeuchi I, Tomoda K, Koji M, Makino K. Hydrophilic drug-loaded PLGA nanoparticles for transdermal delivery. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4087-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|