1
|
Cheng K, Zhao K, Zhang R, Guo J. Progress on control of harmful algae by sustained-release technology of allelochemical: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170364. [PMID: 38307275 DOI: 10.1016/j.scitotenv.2024.170364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
The outbreak of harmful algae blooms caused by water eutrophication seriously jeopardizes the aquatic ecological environment and human health. Therefore, algae control technology has attracted widespread attention between environmental scholars. Allelochemical sustained-release technology which releases the active ingredient to the target medium at a certain rate within the effective time, so that the system maintains a certain concentration, thus prolonging its influence on the target organism. Allelochemical sustained-release technology has become the focus of research due to the characteristics of high efficiency, safety, low-cost, environment friendly and no secondary pollution. This paper reviews the characteristics of allelochemical substances and the status quo of plant extraction, explains the detailed classification of allelochemical sustained-release microspheres (ASRMs) and the application of algae inhibition, summarizes the preparation method of ASRMs, elaborates on the mechanism of algae inhibition of sustained-release technology from the perspective of photosynthesis, cellular enzyme activity, algae cell structure, gene expression, and target site action. Focuses on the summary of the factors influencing the effect of algae inhibition of ASRMs, including particle size of sustained-release microspheres, selection of carrier materials, and the growth stage of algae. The future direction and prospect of algae inhibition by allelochemical sustained-release technology were prospected to provide the scientific basis for water ecological restoration.
Collapse
Affiliation(s)
- Kai Cheng
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Kai Zhao
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Rong Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Jifeng Guo
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an 710054, PR China.
| |
Collapse
|
2
|
Farzan M, Roth R, Schoelkopf J, Huwyler J, Puchkov M. The processes behind drug loading and release in porous drug delivery systems. Eur J Pharm Biopharm 2023:S0939-6411(23)00141-8. [PMID: 37230292 DOI: 10.1016/j.ejpb.2023.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Porous materials are ubiquitous and exhibit properties suitable for depositing therapeutic compounds. Drug loading in porous materials can protect the drug, control its release rate, and improve its solubility. However, to achieve such outcomes from porous delivery systems, effective incorporation of the drug in the internal porosity of the carrier must be guaranteed. Mechanistic knowledge of the factors influencing drug loading and release from porous carriers allows rational design of formulations by selecting a suitable carrier for each application. Much of this knowledge exists in research areas other than drug delivery. Thus, a comprehensive overview of this topic from the drug delivery aspect is warranted. This review aims to identify the loading processes and carrier characteristics influencing the drug delivery outcome with porous materials. Additionally, the kinetics of drug release from porous materials are elucidated, and the common approaches to mathematical modeling of these processes are outlined.
Collapse
Affiliation(s)
- Maryam Farzan
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Roger Roth
- Fundamental Research, Omya International AG, Froschackerstrasse 6, CH-4622 Egerkingen, Switzerland
| | - Joachim Schoelkopf
- Fundamental Research, Omya International AG, Froschackerstrasse 6, CH-4622 Egerkingen, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Maxim Puchkov
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| |
Collapse
|
3
|
Oberoi HS, Arce F, Purohit HS, Yu M, Fowler CA, Zhou D, Law D. Design of a Re-Dispersible High Drug Load Amorphous Formulation. J Pharm Sci 2023; 112:250-263. [PMID: 36243131 DOI: 10.1016/j.xphs.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
Amorphous solid dispersions (ASD) are a commonly used enabling formulation technology to drive oral absorption of poorly soluble drugs. To ensure adequate solid-state stability and dissolution characteristics, the ASD formulation design typically has ≤ 25% drug loading. Exposed to aqueous media, ASD formulations can produce drug-rich colloidal dispersion with particle size < 500 nm. This in situ formation of colloidal particles requires incorporation of excess excipients in the formulation. The concept of using engineered drug-rich particles having comparable size as those generated by ASDs in aqueous media is explored with the goal of increasing drug loading in the solid dosage form. Utilizing ABT-530 as model compound, a controlled solvent-antisolvent precipitation method resulted in a dilute suspension that contained drug-rich (90% (w/w)) amorphous nanoparticles (ANP). The precipitation process was optimized to yield a suspension containing < 300 nm ANP. A systematic evaluation of formulation properties and process variables resulted in the generation of dry powders composed of 1-8 µm agglomerates of nanoparticles which in contact with water regenerated the colloidal suspension having particle size comparable to primary particles. Thus, this work demonstrates an approach to designing a re-dispersible ANP based powder containing ≥90% w/w ABT-530 that could be used in preparation of a high drug load solid dosage form.
Collapse
Affiliation(s)
| | - Freddy Arce
- Current Affiliation: Bristol Myers Squibb, NJ, USA
| | | | - Mengqi Yu
- NCE-Formulation Sciences, AbbVie Inc., North Chicago, IL, USA
| | - Craig A Fowler
- NCE-Formulation Sciences, AbbVie Inc., North Chicago, IL, USA
| | | | - Devalina Law
- NCE-Formulation Sciences, AbbVie Inc., North Chicago, IL, USA.
| |
Collapse
|
4
|
Zarinwall A, Maurer V, Pierick J, Oldhues VM, Porsiel JC, Finke JH, Garnweitner G. Amorphization and modified release of ibuprofen by post-synthetic and solvent-free loading into tailored silica aerogels. Drug Deliv 2022; 29:2086-2099. [PMID: 35838584 PMCID: PMC9291651 DOI: 10.1080/10717544.2022.2092237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Promising active pharmaceutical ingredients (APIs) often exhibit poor aqueous solubility and thus a low bioavailability that substantially limits their pharmaceutical application. Hence, efficient formulations are required for an effective translation into highly efficient drug products. One strategy is the preservation of an amorphous state of the API within a carrier matrix, which leads to enhanced dissolution. In this work, mesoporous silica aerogels (SA) were utilized as a carrier matrix for the amorphization of the poorly water-soluble model drug ibuprofen. Loading of tailored SA was performed post-synthetically and solvent-free, either by co-milling or via the melting method. Thorough analyses of these processes demonstrated the influence of macrostructural changes during the drying and grinding process on the microstructural properties of the SA. Furthermore, interfacial SA-drug interaction properties were selectively tuned by attaching terminal hydrophilic amino- or hydrophobic methyl groups to the surface of the gel. We demonstrate that not only the chemical surface properties of the SA, but also formulation-related parameters, such as the carrier-to-drug ratio, as well as process-related parameters, such as the drug loading method, decisively influence the ibuprofen adsorption efficiency. In addition, the drug-loaded SA formulations exhibited a remarkable physical stability over a period of 6 months. Furthermore, the release behavior is shown to change considerably with different surface properties of the SA matrix. Hence, the reported results demonstrate that utilizing specifically processed and modified SA offers a compelling technique for enhancement of the bioavailability of poorly-water soluble APIs and a versatile adjustment of their release profile.
Collapse
Affiliation(s)
- Ajmal Zarinwall
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Viktor Maurer
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Jennifer Pierick
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Victor Marcus Oldhues
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Julian Cedric Porsiel
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany
| | - Jan Henrik Finke
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Georg Garnweitner
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
5
|
Wewers M, Finke JH, Czyz S, Van Eerdenbrugh B, John E, Büch G, Juhnke M, Bunjes H, Kwade A. Evaluation of the Formulation Parameter-Dependent Redispersibility of API Nanoparticles from Fluid Bed Granules. Pharmaceutics 2022; 14:pharmaceutics14081688. [PMID: 36015314 PMCID: PMC9414476 DOI: 10.3390/pharmaceutics14081688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/05/2022] Open
Abstract
The production of nanosuspensions of poorly soluble active pharmaceutical ingredients (API) is a popular technique to counteract challenges regarding bioavailability of such active substances. A subsequent drying of the nanosuspensions is advantageous to improve the long-term stability and the further processing into solid oral dosage forms. However, associated drying operations are critical, especially with regard to nanoparticle growth, loss in redispersibility and associated compromised bioavailability. This work extends a previous study regarding the applicability of an API (itraconazole) nanosuspension as a granulation liquid in a fluidized bed process with focus on the influence of applied formulation parameters on the structure of obtained nanoparticle-loaded granules and their nanoparticle redispersibility. Generally, a higher dissolution rate of the carrier material (glass beads, lactose, mannitol or sucrose) and a higher content of a matrix former/hydrophilic polymer (PVP/VA or HPMC) in the granulation liquid resulted in the formation of coarser and more porous granules with improved nanoparticle redispersibility. HPMC was found to have advantages as a polymer compared with PVP/VA. In general, a better redispersibility of the nanoparticles from the granules could be associated with better dispersion of the API nanoparticles at the surface of the granules as deduced from the thickness of nanoparticle-loaded layers around the granules. The layer thickness on granules was assessed by means of confocal Raman microscopy. Finally, the dispersion of the nanoparticles in the granule layers was exemplarily described by calculation of theoretical mean nanoparticle distances in the granule layers and was correlated with data obtained from redispersibility studies.
Collapse
Affiliation(s)
- Martin Wewers
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Jan Henrik Finke
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Correspondence:
| | - Stefan Czyz
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | | | - Edgar John
- Novartis Pharma AG, 4002 Basel, Switzerland
| | - Guido Büch
- Novartis Pharma AG, 4002 Basel, Switzerland
| | | | - Heike Bunjes
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Arno Kwade
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Continuous and Size-Controlled Preparation of Ibuprofen Nanosuspension by Antisolvent Crystallization Method Using Hollow Fiber Membrane. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Effect of surface roughness on the collision dynamics of water drops on wood. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Wewers M, Czyz S, Finke JH, John E, Van Eerdenbrugh B, Juhnke M, Bunjes H, Kwade A. Influence of Formulation Parameters on Redispersibility of Naproxen Nanoparticles from Granules Produced in a Fluidized Bed Process. Pharmaceutics 2020; 12:pharmaceutics12040363. [PMID: 32316108 PMCID: PMC7238015 DOI: 10.3390/pharmaceutics12040363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
The particle size reduction of active pharmaceutical ingredients is an efficient method to overcome challenges associated with a poor aqueous solubility. With respect to stability and patient's convenience, the corresponding nanosuspensions are often further processed to solid dosage forms. In this regard, the influence of several formulation parameters (i.e., type of carrier material, type and amount of additional polymeric drying excipient in the nanosuspension) on the redispersibility of naproxen nanoparticle-loaded granules produced in a fluidized bed process was investigated. The dissolution rate of the carrier material (i.e., sucrose, mannitol, or lactose) was identified as a relevant material property, with higher dissolution rates (sucrose > mannitol > lactose) resulting in better redispersibility of the products. Additionally, the redispersibility of the product granules was observed to improve with increasing amounts of polymeric drying excipient in the nanosuspension. The redispersibility was observed to qualitatively correlate with the degree of nanoparticle embedding on the surface of the corresponding granules. This embedding was assumed to be either caused by a partial dissolution and subsequent resolidification of the carrier surface dependent on the dissolution rate of the carrier material or by resolidification of the dissolved polymeric drying excipient upon drying. As the correlation between the redispersibility and the morphology of the corresponding granules was observed for all investigated formulation parameters, it may be assumed that the redispersibility of the nanoparticles is determined by their distance in the dried state.
Collapse
Affiliation(s)
- Martin Wewers
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Stefan Czyz
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Institute of Pharmaceutical Technology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Jan Henrik Finke
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Edgar John
- Novartis Pharma AG, 4002 Basel, Switzerland
| | | | | | - Heike Bunjes
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Institute of Pharmaceutical Technology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Arno Kwade
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
9
|
Ulfa M, Prasetyoko D, Mahadi AH, Bahruji H. Size tunable mesoporous carbon microspheres using Pluronic F127 and gelatin as co-template for removal of ibuprofen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135066. [PMID: 32000337 DOI: 10.1016/j.scitotenv.2019.135066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/28/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Size tunable mesoporous carbon microspheres, MCMs were obtained using Pluronic F127 and gelatin in co-templating method via hydrothermal and pyrolysis treatments. The presence of gelatin increased the mechanical strength of Pluronic F127 which can sustain the uniform microspherical structure of carbon following pyrolysis at 950 °C. The diameter of MCMs were controlled by variation of weight ratios between Pluronic F127 to gelatin from 1:0.01 to 1:1. MCMs exhibited inter-particulate mesoporous structure with high thermal stability (<500 °C). The MCMs were used as adsorbent for removal of ibuprofen and the kinetic studies using linear regression analysis revealed the adsorption fits pseudo second-order kinetic. The rate of adsorption and the amount of adsorbed ibuprofen were correlated well with the surface area and the crystallite size of MCMs. The efficiencies of ibuprofen adsorption on MCMs were also investigated when ibuprofen was dissolved at different concentration of water and hexane mixtures, the effect temperature variation and the amount MCMs to the volume of ibuprofen solution.
Collapse
Affiliation(s)
- Maria Ulfa
- Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Central Java Indonesia.
| | - Didik Prasetyoko
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya 60111, East Java, Indonesia
| | - Abdul Hanif Mahadi
- Centre of Advanced Material and Energy Sciences, University Brunei Darussalam, Jalan Tungku Link, BE1410 Darussalam, Brunei
| | - Hasliza Bahruji
- Centre of Advanced Material and Energy Sciences, University Brunei Darussalam, Jalan Tungku Link, BE1410 Darussalam, Brunei.
| |
Collapse
|
10
|
Che X, Xue J, Zhang J, Yang X, Wang L. One-step preparation of ibuprofen fast- and sustained-release formulation by electrospinning with improved efficacy and reduced side effect. Pharm Dev Technol 2020; 25:659-665. [PMID: 32067550 DOI: 10.1080/10837450.2020.1728773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, we developed a one-step method to prepare ibuprofen fast- and sustained-release complex preparation. It was based on a double jets electrospinning process. Ibuprofen, a poorly water-soluble drug, was electrospun into fibers with polyvinyl pyrrolidone and hydroxypropyl methyl cellulose by two jets, respectively. The complex preparation had an enough initial dose come from fast-release part and a maintenance dose come from sustained-release part. Through the study of X-ray diffraction, differential scanning colorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM), it was confirmed that ibuprofen was highly dispersed in nanofibers (NFs) in amorphous state. Because one line of NFs was very thin and could only extend along two directions, it was difficult for ibuprofen to transform from amorphous to crystal in this kind of approximate one-dimensional structure. Additionally, it was confirmed by animal experiment that the complex preparation also had a benefit to reduce gastric irritation that usually caused by traditional oral ibuprofen preparation. Therefore, the method developed in this study was a convenient and good-quality approach for ibuprofen pain-alleviating preparation.
Collapse
Affiliation(s)
- Xin Che
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Juan Xue
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jianfeng Zhang
- TongjiTang Pharmaceutical Company, China National Pharmaceutical Group Corporation, Guiyang, China
| | - Xiangbo Yang
- TongjiTang Pharmaceutical Company, China National Pharmaceutical Group Corporation, Guiyang, China
| | - Lihong Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
11
|
Ma X, Zhang Y, Weisensee K. Conducting Polymeric Nanocomposites with a Three-Dimensional Co-flow Microfluidics Platform. MICROMACHINES 2019; 10:mi10060383. [PMID: 31181652 PMCID: PMC6630245 DOI: 10.3390/mi10060383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022]
Abstract
The nanoprecipitation of polymers is of great interest in biological and medicinal applications. Many approaches are available, but few generalized methods can fabricate structurally different biocompatible polymers into nanosized particles with a narrow distribution in a high-throughput manner. We simply integrate a glass slide, capillary, and metal needle into a simple microfluidics device. Herein, a detailed protocol is provided for using the glass capillary and slides to fabricate the microfluidics devices used in this work. To demonstrate the generality of our nanoprecipitation approach and platform, four (semi)natural polymers—acetalated dextran (Ac-DEX), spermine acetalated dextran (Sp-Ac-DEX), poly(lactic-co-glycolic acid) (PLGA), and chitosan—were tested and benchmarked by the polymeric particle size and polydispersity. More importantly, the principal objective was to explore the influence of some key parameters on nanoparticle size due to its importance for a variety of applications. The polymer concentration, the solvent/non-solvent volume rate/ratio, and opening of the inner capillary were varied so as to obtain polymeric nanoparticles (NPs). Dynamic light scattering (DLS), transmission electron microscopy (TEM), and optical microscopy are the main techniques used to evaluate the nanoprecipitation output. It turns out that the concentration of polymer most strongly determines the particle size and distribution, followed by the solvent/non-solvent volume rate/ratio, whereas the opening of the inner capillary shows a minor effect. The obtained NPs were smooth spheres with adjustable particle diameters and polymer-dependent surface potentials, both negative and positive.
Collapse
Affiliation(s)
- Xiaodong Ma
- Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China.
| | - Yuezhou Zhang
- Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China.
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520 Turku, Finland.
| | - Korbinian Weisensee
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520 Turku, Finland.
| |
Collapse
|
12
|
Solubilization of ibuprofen for freeze dried parenteral dosage forms. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:17-32. [PMID: 31259719 DOI: 10.2478/acph-2019-0009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/09/2018] [Indexed: 01/19/2023]
Abstract
Ibuprofen, a weakly acidic non-steroidal anti-inflammatory drug having poor aqueous solubility, is a challenging drug for the development of pharmaceutical formulations, resulting in numerous research attempts focusing on improvement of its solubility and consequently bioavailability. Most studies have been done for solid dosage forms, with very little attention paid to parenterals. Hence, the main purpose of the present study was to enhance ibuprofen solubility as a result of formulation composition and the freeze drying process. Moreover, the purpose was to prepare a freeze dried dosage form with improved ibuprofen solubility that could, after simple reconstitution with water for injection, result in an isotonic parenteral solution. Solubility of ibuprofen was modified by various excipients suitable for parenteral application. Drug interactions with selected excipients in the final product/lyophilisate were studied by a combined use of XRPD, DSC, Raman and ss-NMR. Analyses of lyophilized samples showed solubility enhancement of ibuprofen and in situ formation of an ibuprofen salt with the alkaline excipients used.
Collapse
|
13
|
Melzig S, Finke JH, Schilde C, Kwade A. Formation of long-term stable amorphous ibuprofen nanoparticles via antisolvent melt precipitation (AMP). Eur J Pharm Biopharm 2018; 131:224-231. [PMID: 30149060 DOI: 10.1016/j.ejpb.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
Abstract
Antisolvent precipitation of poorly water-soluble drugs is a promising formulation technique to synthesize amorphous nanoparticles. The dissolution behavior of these nanoparticles is improved because of the high specific surface area and the amorphous state, leading to an enhanced bioavailability of the drug molecules. Nevertheless, stabilization of precipitated drug nanoparticles against agglomeration and recrystallization, which constitutes a key issue for further processing steps, has turned out to be a major challenge. For that reason, the present study presents a synthesis method to produce long-term stable amorphous ibuprofen nanoparticles via antisolvent precipitation. To reach this goal, a new precipitation method was developed: antisolvent melt precipitation (AMP). Formulation strategies (e.g. varying fraction of stabilizer) as well as process parameters (e.g. temperature) were under study to estimate their influence on particle size, size distribution, crystallinity, morphology and stability of synthesized drug nanoparticles.
Collapse
Affiliation(s)
- S Melzig
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany; PVZ- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Germany.
| | - J H Finke
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany; PVZ- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Germany
| | - C Schilde
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany; PVZ- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Germany
| | - A Kwade
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany; PVZ- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Germany
| |
Collapse
|
14
|
Association of PLGA Microspheres to Carrier Pellets by Fluid Bed Coating: A Novel Approach towards Improving the Flowability of Microparticles. JOURNAL OF PHARMACEUTICS 2018; 2018:3874348. [PMID: 30057848 PMCID: PMC6051010 DOI: 10.1155/2018/3874348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 12/02/2022]
Abstract
Micro- and nanoparticles have been vastly studied due to their biopharmaceutical advantages. However, these particles generally display very weak packing and poor mechanical properties. Hereby, a new methodology is proposed to associate poorly flowing particles to macrostructures targeting the improvement of flowability and redispersibility of the particles. Cecropia glaziovii-loaded PLGA microspheres (4.59 ± 0.04 μm) were associated with carrier pellets by film coating in a top-spray fluid bed equipment. Optimal conditions were determined employing a IV-Optimal factorial design and RGB image analysis as 1% (w/v) Kollicoat® Protect as coating polymer (2:1 weight ratio of coating suspension to carrier pellets), containing 5 mg/mL microspheres (loading of 28.07 ± 1.01 mg/g). The method led to an improvement of the overall flowability. No relevant molecular interactions between PLGA microspheres and polymers were found. Microspheres detached rapidly from the surface of the pellets, without agglomeration, when exposed to hydrodynamic forces. In vitro release profiles, prior to and after fluid bed coating, showed no relevant changes in drug release rate and extent. The methodology developed is suitable for further applications when an improvement on the flow properties and redispersibility of the product is desired. We showed an easy-to-implement methodology that can be executed without significant increase in costs.
Collapse
|
15
|
Abstract
A new spray approach is proposed to overcome the disadvantages of the traditional single-orifice nozzle, such as uneven coatings, overspray, and low efficiency. Both the experimental measurements and numerical simulation are used to investigate the spray characteristics of the multiorifice nozzle. The results show the new nozzle structure is able to disperse the particles in a wider regime and reduce the central pressure. It is an effective way to produce uniform ultrafine coatings.
Collapse
|