1
|
Yang F, Gong S, Hu D, Chen L, Wang W, Cheng B, Yang J, Li B, Wang X. The biological response of pH-switch-based gold nanoparticle-composite polyamino acid embolic material. NANOSCALE 2024; 16:10448-10457. [PMID: 38752569 DOI: 10.1039/d4nr00989d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
With continuous advances in medical technology, non-invasive embolization has emerged as a minimally invasive treatment, offering new possibilities in cancer therapy. Fluorescent labeling can achieve visualization of therapeutic agents in vivo, providing technical support for precise treatment. This paper introduces a novel in situ non-invasive embolization composite material, Au NPs@(mPEG-PLGTs), created through the electrostatic combination of L-cysteine-modified gold nanoparticles (Au NPs) and methoxy polyethylene glycol amine-poly[(L-glutamic acid)-(L-tyrosine)] (mPEG-PLGTs). Experiments were undertaken to confirm the biocompatibility, degradability, stability and performance of this tumor therapy. The research results demonstrated a reduction in tumor size as early as the fifth day after the initial injection, with a significant 90% shrinkage in tumor volume observed after a 20-day treatment cycle, successfully inhibiting tumor growth and exhibiting excellent anti-tumor effects. Utilizing near-infrared in vivo imaging, Au NPs@(mPEG-PLGTs) displayed effective fluorescence tracking within the bodies of nude BALB-c mice. This study provides a novel direction for the further development and innovation of in situ non-invasive embolization in the field, highlighting its potential for rapid, significant therapeutic effects with minimal invasiveness and enhanced safety.
Collapse
Affiliation(s)
- Feng Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R.China.
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P.R.China
| | - Shiwen Gong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R.China.
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P.R.China
| | - Die Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R.China.
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P.R.China
| | - Lihua Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R.China.
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P.R.China
| | - Wenyuan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R.China.
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P.R.China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430060, P.R.China
| | - Jing Yang
- School of Foreign Languages, Wuhan University of Technology, Wuhan 430070, P.R.China
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R.China.
- Hainan Institute, Wuhan University of Technology, Sanya 572000, P.R.China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P.R.China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R.China.
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan 528200, P.R.China
- Hainan Institute, Wuhan University of Technology, Sanya 572000, P.R.China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P.R.China
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430060, P.R.China
| |
Collapse
|
2
|
Zhong RR, Xie M, Luan CZ, Zhang LM, Hao DB, Yuan SF, Wu T. Highly intense NIR emissive Cu 4Pt 2 bimetallic clusters featuring Pt(i)-Cu 4-Pt(i) sandwich kernel. Chem Sci 2024; 15:7552-7559. [PMID: 38784728 PMCID: PMC11110137 DOI: 10.1039/d4sc01022a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Metal nanoclusters (NCs) capable of near-infrared (NIR) photoluminescence (PL) are gaining increasing interest for their potential applications in bioimaging, cell labelling, and phototherapy. However, the limited quantum yield (QY) of NIR emission in metal NCs, especially those emitting beyond 800 nm, hinders their widespread applications. Herein, we present a bright NIR luminescence (PLQY up to 36.7%, ∼830 nm) bimetallic Cu4Pt2 NC, [Cu4Pt2(MeO-C6H5-C[triple bond, length as m-dash]C)4(dppy)4]2+ (dppy = diphenyl-2-pyridylphosphine), with a high yield (up to 67%). Furthermore, by modifying the electronic effects of R in RC[triple bond, length as m-dash]C- (R = MeO-C6H5, F-C6H5, CF3-C6H5, Nap, and Biph), we can effectively modulate phosphorescence properties, including the PLQY, emission wavelength, and excited state decay lifetime. Experimental and computational studies both demonstrate that in addition to the electron effects of substituents, ligand modification enhances luminescence intensity by suppressing non-radiation transitions through intramolecular interactions. Simultaneously, it allows the adjustment of emitting wavelengths by tuning the energy gaps and first excited triplet states through intermolecular interactions of ligand substituents. This study provides a foundation for rational design of the atomic-structures of alloy metal NCs to enhance their PLQY and tailor the PL wavelength of NIR emission.
Collapse
Affiliation(s)
- Rui-Ru Zhong
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Cui-Zhou Luan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Lin-Mei Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - De-Bo Hao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Shang-Fu Yuan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Tao Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
3
|
Mordini D, Mavridi-Printezi A, Menichetti A, Cantelli A, Li X, Montalti M. Luminescent Gold Nanoclusters for Bioimaging: Increasing the Ligand Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040648. [PMID: 36839016 PMCID: PMC9960743 DOI: 10.3390/nano13040648] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 05/31/2023]
Abstract
Fluorescence, and more in general, photoluminescence (PL), presents important advantages for imaging with respect to other diagnostic techniques. In particular, detection methodologies exploiting fluorescence imaging are fast and versatile; make use of low-cost and simple instrumentations; and are taking advantage of newly developed powerful, low-cost, light-based electronic devices, such as light sources and cameras, used in huge market applications, such as civil illumination, computers, and cellular phones. Besides the aforementioned simplicity, fluorescence imaging offers a spatial and temporal resolution that can hardly be achieved with alternative methods. However, the two main limitations of fluorescence imaging for bio-application are still (i) the biological tissue transparency and autofluorescence and (ii) the biocompatibility of the contrast agents. Luminescent gold nanoclusters (AuNCs), if properly designed, combine high biocompatibility with PL in the near-infrared region (NIR), where the biological tissues exhibit higher transparency and negligible autofluorescence. However, the stabilization of these AuNCs requires the use of specific ligands that also affect their PL properties. The nature of the ligand plays a fundamental role in the development and sequential application of PL AuNCs as probes for bioimaging. Considering the importance of this, in this review, the most relevant and recent papers on AuNCs-based bioimaging are presented and discussed highlighting the different functionalities achieved by increasing the complexity of the ligand structure.
Collapse
|
4
|
De La Franier B, Thompson M. Surface Adsorption of the Cancer Biomarker Lysophosphatidic Acid in Serum Studied by Acoustic Wave Biosensor. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4158. [PMID: 34361352 PMCID: PMC8347737 DOI: 10.3390/ma14154158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
The thickness shear mode acoustic wave device is of interest for the sensing of biomarkers for diseases in various biological fluids, but suffers from the issue of non-specific adsorption of compounds other than those of interest to the electrode surface, thus affecting the device's output. The aim of this present study was to determine the level of non-specific adsorption on gold electrodes from serum samples with added ovarian cancer biomarker lysophosphatidic acid in the presence of a surface anti-fouling layer. The latter was an oligoethylene molecule with thiol group for attachment to the electrode surface. It was found that the anti-fouling layer had a minimal effect on the level of both adsorption of components from serum and the marker. This result stands in sharp contrast to the analogous monolayer employed for anti-fouling reduction on silica.
Collapse
Affiliation(s)
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada;
| |
Collapse
|
5
|
Uehara N, Masubuchi Y, Inagawa A. Manipulation of aggregation-induced emission of thermoresponsive fluorescent polymers having Au(I)–S groups for a fluorescent chemosensor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Uehara N, Sonoda N, Iwamatsu T, Haneishi C, Inagawa A. Spontaneous growth of gold nanoclusters to form gold nanoparticles in the presence of high molecular weight poly(ethylene glycol). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Zhang S, Zhang X, Su Z. Biomolecule conjugated metal nanoclusters: bio-inspiration strategies, targeted therapeutics, and diagnostics. J Mater Chem B 2020; 8:4176-4194. [DOI: 10.1039/c9tb02936b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To help those suffering from viral infections and cancers, scientists are exploring enhanced therapeutic methods via metal nanoclusters (MNCs).
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Advanced Functional Polymer Composites
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| | - Xiaoyuan Zhang
- Faculty of Physics and Astronomy
- Friedrich-Schiller University Jena
- 07743 Jena
- Germany
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Advanced Functional Polymer Composites
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| |
Collapse
|