1
|
Ding YY, Zhou H, Peng-Deng, Zhang BQ, Zhang ZJ, Wang GH, Zhang SY, Wu ZR, Wang YR, Liu YQ. Antimicrobial activity of natural and semi-synthetic carbazole alkaloids. Eur J Med Chem 2023; 259:115627. [PMID: 37467619 DOI: 10.1016/j.ejmech.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Since the first natural carbazole alkaloid, murrayanine, was isolated from Mwraya Spreng, carbazole alkaloid derivatives have been widely concerned for their anti-tumor, anti-viral and anti-bacterial activities. In recent decades, a growing body of data suggest that carbazole alkaloids and their derivatives have different biological activities. This is the first comprehensive description of the antifungal and antibacterial activities of carbazole alkaloids in the past decade (2012-2022), including natural and partially synthesized carbazole alkaloids in the past decade. Finally, the challenges and problems faced by this kind of alkaloids are summarized. This paper will be helpful for further exploration of this kind of alkaloids.
Collapse
Affiliation(s)
- Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Peng-Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Abdel-Haleem DR, Badr EE, Samy AM, Baker SA. Larvicidal evaluation of two novel cationic gemini surfactants against the potential vector of West Nile virus Culex pipiens Linnaeus (Diptera: Culicidae). MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:483-490. [PMID: 36799890 DOI: 10.1111/mve.12645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
The development of insecticide resistance is a serious consequence of the widespread applications of synthetic insecticides. Recent studies have provided alternatives to currently available insecticides. Here, novel cationic gemini surfactants were synthesized to assess their insecticidal activities using laboratory and field strains larvae of Culex pipiens Linnaeus (Diptera: Culicidae). The efficacy of these surfactants was compared to that of clove oil and spinosad. The two surfactants G1 and G2 showed good insecticidal activities in laboratory strain with LC50 0.013 and 0.054 ppm, respectively, relative to spinosad with LC50 0.027 ppm, 48 h posttreatment. Although spinosad showed high efficiency against lab strain, it exhibited a high resistance ratio (RR) of 15.111 and 13.111 toward the field strain at 24 and 48 h posttreatment, respectively. The two gemini surfactants have a good safety profile and low RR (RR <5), which is close to clove oil; however, G1 and G2 presented high activities with 11,043.230 and 2658.648 folds, respectively, compared to clove oil. The treated Cx. pipiens larvae showed severe morphological malformations after treatment with gemini surfactants. The results of this study are promising in terms of developing novel, effective, affordable, and safe approaches for mosquito control strategies to reduce the risk of arbovirus transmission, which remains a global public health threat.
Collapse
Affiliation(s)
- Doaa R Abdel-Haleem
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Entsar E Badr
- Department of Chemistry, Faculty of Science Girls Branch, Al-Azhar University, Cairo, Egypt
| | - Abdallah M Samy
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sharbat A Baker
- Department of Chemistry, Faculty of Science Girls Branch, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Pigot C, Brunel D, Dumur F. Indane-1,3-Dione: From Synthetic Strategies to Applications. Molecules 2022; 27:5976. [PMID: 36144711 PMCID: PMC9501146 DOI: 10.3390/molecules27185976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Indane-1,3-dione is a versatile building block used in numerous applications ranging from biosensing, bioactivity, bioimaging to electronics or photopolymerization. In this review, an overview of the different chemical reactions enabling access to this scaffold but also to the most common derivatives of indane-1,3-dione are presented. Parallel to this, the different applications in which indane-1,3-dione-based structures have been used are also presented, evidencing the versatility of this structure.
Collapse
Affiliation(s)
- Corentin Pigot
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Damien Brunel
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
4
|
Klovak V, Kulichenko S, Lelyushok S. Fluorescence Study of the Influence of the Structure and Hydrophobicity of Fluorescent Dyes and Cationic Surfactants on their Association in Aqueous Solutions. Aust J Chem 2021. [DOI: 10.1071/ch20221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The statistical characteristics of the dependences of the fluorescence signal of analytical systems as a function of the integral parameters of the structure of fluorescent reagents and cationic surfactants on their association in aqueous solutions has been investigated. Molecular weight, surface area, and their first-order molecular connectivity index have been taken as parameters of the structure of the reagents and cationic surfactants. The influence of the hydrophobicity of the reagent and cationic surfactants, such as the octanol–water distribution constant and octanol–water partition coefficient, on the fluorescence signal of the reagent–cationic surfactant associates have also been investigated. It is shown that the associates of anionic reagents with cationic surfactant counter ions are characterised by high stability and a higher analytical signal compared with associates in which there is no electrostatic attraction between the reagent and the surfactant ion. The effect of hydrophobicity of the reagent and cationic surfactant in the absence of electrostatic attraction between the interacting particles is similar. The increase in the role of the influence of the structure of cationic reagents in their association with cationic surfactants, when the electrostatic attraction is absent and the stability of the associates is due mainly to hydrophobic interactions, is noticeable. The regularities of the influence of the colloid-chemical state on the analytical signal of associated cationic surfactants in solutions have been investigated. The study made it possible to formulate a rational basis for the search and design of analytical systems for the determination of large cations by the fluorescence method.
Collapse
|
5
|
Labena A, Hegazy MA, Sami RM, Hozzein WN. Multiple Applications of a Novel Cationic Gemini Surfactant: Anti-Microbial, Anti-Biofilm, Biocide, Salinity Corrosion Inhibitor, and Biofilm Dispersion (Part II). Molecules 2020; 25:E1348. [PMID: 32188097 PMCID: PMC7144103 DOI: 10.3390/molecules25061348] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 01/14/2023] Open
Abstract
The Egyptian petroleum industries are incurring severe problems with corrosion, particularly corrosion that is induced by sulfidogenic microbial activities in harsh salinity environments despite extensively using biocides and metal corrosion inhibitors. Therefore, in this study, a synthesized cationic gemini surfactant (SCGS) was tested as a broad-spectrum antimicrobial, anti-bacterial, anti-candida, anti-fungal, anti-biofilm (anti-adhesive), and bio-dispersion agent. The SCGS was evaluated as a biocide against environmental sulfidogenic-bacteria and as a corrosion inhibitor for a high salinity cultivated medium. The SCGS displayed wide spectrum antimicrobial activity with minimum bactericidal/fungicidal inhibitory concentrations. The SCGS demonstrated anti-bacterial, anti-biofilm, and bio-dispersion activity. The SCGS exhibited bactericidal activity against environmental sulfidogenic bacteria and the highest corrosion inhibition efficiency of 93.8% at 5 mM. Additionally, the SCGS demonstrated bio-dispersion activity against the environmental sulfidogenic bacteria at 5.49% salinity. In conclusion, this study provides a novel synthesized cationic surfactant with many applications in the oil and gas industry: as broad-spectrum antimicrobial and anti-biofilm agents, corrosion inhibition for high salinity, biocides for environmentally sulfidogenic bacteria, and as bio-dispersion agents.
Collapse
Affiliation(s)
- A. Labena
- Egyptian Petroleum Research Institute (EPRI), Nasr, Cairo 11727, Egypt; (M.A.H.); (R.M.S.)
| | - M. A. Hegazy
- Egyptian Petroleum Research Institute (EPRI), Nasr, Cairo 11727, Egypt; (M.A.H.); (R.M.S.)
| | - Radwa M. Sami
- Egyptian Petroleum Research Institute (EPRI), Nasr, Cairo 11727, Egypt; (M.A.H.); (R.M.S.)
| | - Wael N. Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|