1
|
Kumari P, Upadhyay P, Tripathi KM, Gupta R, Kulshrestha V, Awasthi K. Sulphonated poly(ethersulfone)/carbon nano-onions-based nanocomposite membranes with high ion-conducting channels for salt removal via electrodialysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87343-87352. [PMID: 37421532 DOI: 10.1007/s11356-023-28570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Herein, we are reporting the carbon nano onions (CNO)-based sulphonated poly(ethersulfone) (SPES) composite membranes by varying CNO content in SPES matrix for water desalination applications. CNOs were cost-effectively synthesized using flaxseed oil as a carbon source in an energy efficient flame pyrolysis process. The physico- and electrochemical properties of nanocomposite membranes were evaluated and compared to pristine SPES. Moreover, the chemical characterisation of composite membranes and CNOs were illustrated using techniques such as nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FE-SEM), thermogravimetric analysis (TGA) and universal tensile machine (UTM). In the series of nanocomposite membranes, SPES-0.25 composite membrane displayed the highest water uptake (WU), ion exchange membrane (IEC) and ionic conductivity (IC) values that were enhanced by 9.25%, ~ 44.78% and ~ 6.10%, respectively, compared to pristine SPES membrane. The electrodialytic performance can be achieved maximum when membranes possess low power consumption (PC) and high energy efficiency (Ee). Therefore, the value of Ee and Pc for SPES-0.25 membrane has been determined to be 99.01 ± 0.97% and 0.92 ± 0.01 kWh kg-1, which are 1.12 and 1.11 times higher than the pristine SPES membrane. Hence, integrating CNO nanoparticles into the SPES matrix enhanced the ion-conducting channels.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Prashant Upadhyay
- CSIR-Central Salt and Marine Chemical Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, India
| | - Kumud Malika Tripathi
- Department of Chemistry, Indian Institute of Petroleum and Energy, Vishakhapatnam, Andhra Pradesh, 530003, India
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Vaibhav Kulshrestha
- CSIR-Central Salt and Marine Chemical Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, India
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
| |
Collapse
|
2
|
Jamil A, Rafiq S, Iqbal T, Khan HAA, Khan HM, Azeem B, Mustafa MZ, Hanbazazah AS. Current status and future perspectives of proton exchange membranes for hydrogen fuel cells. CHEMOSPHERE 2022; 303:135204. [PMID: 35660058 DOI: 10.1016/j.chemosphere.2022.135204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/21/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The world is on the lookout for sustainable and environmentally benign energy generating systems. Fuel cells (FCs) are regarded as environmentally friendly technology since they address a variety of environmental issues, such as hazardous levels of local pollutants, while also delivering economic advantages owing to their high efficiency. A fuel cell is a device that changes chemical energy contained in fuels (such as hydrogen and methanol) into electrical energy. A wide variety of FCs are commercially available; however, proton exchange membranes for hydrogen fuel cells (PEMFCs) have received overwhelming attention owing to their potential to significantly reduce our energy consumption, pollution emissions, and reliance on fossil fuels. The proton exchange membrane (PEM) is a critical element; it is made of semipermeable polymer and serves as a barrier between the cathode and anode during fuel cell construction. Additionally, membranes function as an insulator between the cathode and anode, facilitating proton exchange and inhibiting electron exchange between the electrodes. Due to the excellent features such as durability and proton conductivity, Nafion membranes are commercially viable and have been in use for a long time. However, Nafion membranes are costly, and their proton exchange capacities degrade over time at higher temperatures and low relative humidity. Other types of membranes have been considered in addition to Nafion membranes. This article discusses the problems connected with several types of PEMs, as well as the strategies adopted to improve their characteristics and performance.
Collapse
Affiliation(s)
- Asif Jamil
- Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Pakistan.
| | - Sikander Rafiq
- Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Pakistan
| | - Tanveer Iqbal
- Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Pakistan
| | - Hafiza Aroosa Aslam Khan
- Department of Chemical Engineering, University of Engineering and Technology, Lahore, 54000, Pakistan
| | - Haris Mahmood Khan
- Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Pakistan
| | - Babar Azeem
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| | - M Z Mustafa
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Abdulkader S Hanbazazah
- Department of Industrial and Systems Engineering, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Liu L, Lu Y, Pu Y, Li N, Hu Z, Chen S. Highly sulfonated carbon nano-onions as an excellent nanofiller for the fabrication of composite proton exchange membranes with enhanced water retention and durability. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
Synthesis of Ni2P/Ni12P5 composite for a highly efficient hydrogen production from formaldehyde solution. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01984-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Feng Y, Zhong S, Cui X, Li Y, Ding C, Cui L, Wang M, Yang Y, Liu W. The synergistic effect of polyorganosilicon and sulfonic groups functionalized graphene oxide on the performance of sulfonated poly (ether ether ketone ketone) polyelectrolyte material. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Nie M, Sun H, Gao Z, Li Q, Xue Z, Luo J, Liao J. Co–Ni nanowires supported on porous alumina as an electrocatalyst for the hydrogen evolution reaction. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
S. RRR, W. R, M. K, Y. WW, J. P. Recent Progress in the Development of Aromatic Polymer-Based Proton Exchange Membranes for Fuel Cell Applications. Polymers (Basel) 2020; 12:E1061. [PMID: 32384660 PMCID: PMC7285229 DOI: 10.3390/polym12051061] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/24/2022] Open
Abstract
Proton exchange membranes (PEMs) play a pivotal role in fuel cells; conducting protons from the anode to the cathode within the cell's membrane electrode assembles (MEA) separates the reactant fuels and prevents electrons from passing through. High proton conductivity is the most important characteristic of the PEM, as this contributes to the performance and efficiency of the fuel cell. However, it is also important to take into account the membrane's durability to ensure that it canmaintain itsperformance under the actual fuel cell's operating conditions and serve a long lifetime. The current state-of-the-art Nafion membranes are limited due to their high cost, loss of conductivity at elevated temperatures due to dehydration, and fuel crossover. Alternatives to Nafion have become a well-researched topic in recent years. Aromatic-based membranes where the polymer chains are linked together by aromatic rings, alongside varying numbers of ether, ketone, or sulfone functionalities, imide, or benzimidazoles in their structures, are one of the alternatives that show great potential as PEMs due totheir electrochemical, mechanical, and thermal strengths. Membranes based on these polymers, such as poly(aryl ether ketones) (PAEKs) and polyimides (PIs), however, lack a sufficient level of proton conductivity and durability to be practical for use in fuel cells. Therefore, membrane modifications are necessary to overcome their drawbacks. This paper reviews the challenges associated with different types of aromatic-based PEMs, plus the recent approaches that have been adopted to enhance their properties and performance.
Collapse
Affiliation(s)
- Raja Rafidah R. S.
- School of Engineering, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Rashmi W.
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia
| | - Khalid M.
- Graphene and Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia;
| | - Wong W. Y.
- Fuel Cell Institute, UniversitiKebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia
| | - Priyanka J.
- Graphene and Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia;
| |
Collapse
|
8
|
Acid resistant PVDF-co-HFP based copolymer proton exchange membrane for electro-chemical application. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Budi CS, Saikia D, Chen CS, Kao HM. Catalytic evaluation of tunable Ni nanoparticles embedded in organic functionalized 2D and 3D ordered mesoporous silicas from the hydrogenation of nitroarenes. J Catal 2019. [DOI: 10.1016/j.jcat.2018.12.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Gahlot S, Yadav V, Sharma PP, Kulshrestha V. Zn-MOF@SPES composite membranes: synthesis, characterization and its electrochemical performance. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1505916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Swati Gahlot
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, INDIA
| | - Vikrant Yadav
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, INDIA
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, INDIA
| | - Prem P. Sharma
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, INDIA
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, INDIA
| | - Vaibhav Kulshrestha
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, INDIA
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, INDIA
| |
Collapse
|