1
|
Liu C, Jia X, Wang Y, Liu Y, Qin W, Wei L. Preparation and demulsification performance of magnetic demulsifier Fe 3N@F. RSC Adv 2024; 14:31730-31739. [PMID: 39376519 PMCID: PMC11456998 DOI: 10.1039/d4ra05569a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024] Open
Abstract
Given the suboptimal emulsification performance and the potential for secondary pollution posed by existing demulsifiers, a facile and highly efficient fluorinated magnetic demulsifier (Fe3N@F) was synthesized via a one-step approach using fluorinated polyether and iron nitride as raw materials.The morphology and structure of the demulsifier were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The results confirm a successful fluoropolyether coating on the surface of iron nitride. The demulsifying and dehydrating properties were assessed through demulsifying and dehydrating experiments, and the influence of demulsifier addition and demulsifying temperature on the demulsification performance was investigated. Additionally, the demulsification mechanism was analyzed by the microscopic demulsification process. The results indicated that under the condition of the optimum demulsification temperature of 45 °C and the optimum demulsifier dosage of 150 mg L-1, the water removal (%) of the magnetic demulsifier containing fluorine (Fe3N@F) was the highest, and could reach 89.4%. Fe3N@F exhibited excellent magnetic response, the demulsifying rate could reach above 70% after recycling and reusing it 6 times. The application of iron nitride in demulsification presents a novel thought for the advancement of magnetic demulsifiers.
Collapse
Affiliation(s)
- Chao Liu
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, Daqing Normal University Daqing 163712 China
- Key Laboratory of Enhanced Oil Recovery, Northeast Petroleum University, Ministry of Education Daqing 163318 China
| | - Xinlei Jia
- College of Chemical Engineering and Safety, Shandong University of Aeronautics Binzhou 256603 China
| | - Yonghui Wang
- College of Chemical Engineering and Safety, Shandong University of Aeronautics Binzhou 256603 China
| | - Yanjuan Liu
- Key Laboratory of Enhanced Oil Recovery, Northeast Petroleum University, Ministry of Education Daqing 163318 China
| | - Weining Qin
- Key Laboratory of Enhanced Oil Recovery, Northeast Petroleum University, Ministry of Education Daqing 163318 China
| | - Lixin Wei
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, Daqing Normal University Daqing 163712 China
- Key Laboratory of Enhanced Oil Recovery, Northeast Petroleum University, Ministry of Education Daqing 163318 China
| |
Collapse
|
2
|
Hernandez-Rodriguez G, Tenorio-Garcia E, Ettelaie R, Lishchuk SV, Harbottle D, Murray BS, Sarkar A. Demulsification of Pickering emulsions: advances in understanding mechanisms to applications. SOFT MATTER 2024; 20:7344-7356. [PMID: 39258321 DOI: 10.1039/d4sm00600c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Pickering emulsions are ultra-stable dispersions of two immiscible fluids stabilized by solid or microgel particles rather than molecular surfactants. Although their ultra-stability is a signature performance indicator, often such high stability hinders their demulsification, i.e., prevents the droplet coalescence that is needed for phase separation on demand, or release of the active ingredients encapsulated within droplets and/or to recover the particles themselves, which may be catalysts, for example. This review aims to provide theoretical and experimental insights on demulsification of Pickering emulsions, in particular identifying the mechanisms of particle dislodgment from the interface in biological and non-biological applications. Even though the adhesion of particles to the interface can appear irreversible, it is possible to detach particles via (1) alteration of particle wettability, and/or (2) particle dissolution, affecting the particle radius by introducing a range of physical conditions: pH, temperature, heat, shear, or magnetic fields; or via treatment with chemical/biochemical additives, including surfactants, enzymes, salts, or bacteria. Many of these changes ultimately influence the interfacial rheology of the particle-laden interface, which is sometimes underestimated. There is increasing momentum to create responsive Pickering particles such that they offer switchable wettability (demulsification and re-emulsification) when these conditions are changed. Demulsification via wettability alteration seems like the modus operandi whilst particle dissolution remains only partially explored, largely dominated by food digestion-related studies where Pickering particles are digested using gastrointestinal enzymes. Overall, this review aims to stimulate new thinking about the control of demulsification of Pickering emulsions for release of active ingredients associated with these ultra-stable emulsions.
Collapse
Affiliation(s)
- Gloria Hernandez-Rodriguez
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
- School of Chemical and Process Engineering, University of Leeds, UK
| | - Elizabeth Tenorio-Garcia
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Rammile Ettelaie
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Sergey V Lishchuk
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
- Thermodynamics and Process Engineering, Technische Universität Berlin, 10587 Berlin, Germany
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, UK
| | - Brent S Murray
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Anwesha Sarkar
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
3
|
Ossai IC, Hamid FS, Aboudi-Mana SC, Hassan A. Ecotoxicological effects, human and animal health risks of pollution and exposure to waste engine oils: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:416. [PMID: 39240425 DOI: 10.1007/s10653-024-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Waste engine oils are hazardous waste oils originating from the transportation sector and industrial heavy-duty machinery operations. Improper handling, disposal, and miscellaneous misuses cause significant air, soil, sediments, surface water, and groundwater pollution. Occupational exposure by prolonged and repeated contact poses direct or indirect health risks, resulting in short-term (acute) or long-term (chronic) toxicities. Soil pollution causes geotoxicity by disrupting the biocenosis and physicochemical properties of the soil, and phytotoxicity by impairing plant growth, physiology and metabolism. Surface water pollution impacts aquatic ecosystems and biodiversity. Air pollution from incineration causes the release of greenhouse gases creating global warming, noxious gases and particulate matter eliciting pulmonary disorders. The toxicity of waste engine oil is due to the total petroleum hydrocarbons (TPH) composition, including polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, xylene (BTEX), polychlorinated biphenyls (PCBs) congeners, organometallic compounds, and toxic chemical additives. The paper aims to provide a comprehensive overview of the ecotoxicological effects, human and animal health toxicology and exposure to waste engine oils. It highlights the properties and functions of engine oil and describes waste engine oil generation, disposal and recycling. It provides intensive evaluations and descriptions of the toxicokinetics, metabolism, routes of exposure and toxicosis in human and animal studies based on toxicological, epidemiological and experimental studies. It emphasises the preventive measures in occupational exposure and recommends risk-based remediation techniques to mitigate environmental pollution. The review will assist in understanding the potential risks of waste engine oil with significant consideration of the public health benefits and importance.
Collapse
Affiliation(s)
- Innocent Chukwunonso Ossai
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Waste Management, Institute of Research Management and Monitoring, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Tetragram Bioresources Limited, Federal Capital Territory (FCT), Abuja, Nigeria.
| | - Fauziah Shahul Hamid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Waste Management, Institute of Research Management and Monitoring, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Suzanne Christine Aboudi-Mana
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Waste Management, Institute of Research Management and Monitoring, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Auwalu Hassan
- Centre for Research Excellence and Incubation Management, Universiti Sultan Zainal Abdidin, 21300, Kuala Nerus, Terengganu Darul Iman, Malaysia
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abdidin, 21300, Kuala Nerus, Terengganu Darul Iman, Malaysia
- Department of Biological Sciences, Faculty of Science, Federal University Kashere, Kashere, Gombe State, Nigeria
| |
Collapse
|
4
|
Tian Y, He C, He L, Xu Z, Sui H, Li X. Doping heteroatoms to form multiple hydrogen bond sites for enhanced interfacial reconstruction and separations. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134477. [PMID: 38703682 DOI: 10.1016/j.jhazmat.2024.134477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Interfacial challenges in unconventional oil extraction include heavy oil-water-solid multiphase separation and corrosion inhibition. Herein, a novel strategy based on interfacial hydrogen bonding reconstruction is proposed for constructing multifunctional interfacially active materials (MIAMs) to address multi-interfacial separation needs. A simple one-pot method is applied to successfully synthesize four different MIAM varieties, integrating site groups (-NH2, OSO, -COOH, and Si-O-Si) with multiple hydrogen bonds (HBs) into allyl polyether chains. The results indicate that all synthesized MIAMs excel in demulsification, detergency, and corrosion inhibition simultaneously, even at 25 °C. Their dehydration efficiency for different water-in-oil emulsions (even heavy oil emulsion) surpasses 99.9 % even at 16 °C, showing their excellent energy-saving potential for field applications. Furthermore, they demonstrate effective, nondestructive static cleaning (up to 86 %) of adhered oil from solid surfaces at 25 °C and provide corrosion inhibition effects (up to 92.09 %) on mild steel immersed in saturated brine. Mechanistic tests reveal that incorporating multiple HB sites in MIAMs dramatically enhances their effectiveness in interfacial separations. Based on these findings, an HB-dominated noncovalent interaction reconstruction strategy is tentatively proposed to develop advanced materials for low-carbon, efficient interfacial separations.
Collapse
Affiliation(s)
- Ying Tian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; National Engineering Research Centre of Distillation Technology, Tianjin 300072, China
| | - Changqing He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; National Engineering Research Centre of Distillation Technology, Tianjin 300072, China
| | - Lin He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; National Engineering Research Centre of Distillation Technology, Tianjin 300072, China.
| | - Zhenghe Xu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Sui
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; National Engineering Research Centre of Distillation Technology, Tianjin 300072, China
| | - Xingang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; National Engineering Research Centre of Distillation Technology, Tianjin 300072, China
| |
Collapse
|
5
|
Liu F, He W, Huang X, Yin J, Nie S. The Emulsification and Stabilization Mechanism of an Oil-in-Water Emulsion Constructed from Tremella Polysaccharide and Citrus Pectin. Foods 2024; 13:1545. [PMID: 38790846 PMCID: PMC11120492 DOI: 10.3390/foods13101545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The objective of this study was to investigate the feasibility of the mixture of tremella polysaccharide (TP) and citrus pectin (CP) as an emulsifier by evaluating its emulsifying ability/stability. The results showed that the TP:CP ratio of 5:5 (w/w) could effectively act as an emulsifier. CP, owing its lower molecular weight and highly methyl esterification, facilitated the emulsification of oil droplets, thereby promoting the dispersion of droplets. Meanwhile, the presence of TP enhanced the viscosity of emulsion system and increased the electrostatic interactions and steric hindrance, therefore hindering the migration of emulsion droplets, reducing emulsion droplets coalesce, and enhancing emulsion stability. The emulsification and stabilization performances were influenced by the molecular weight, esterified carboxyl groups content, and electric charge of TP and CP, and the potential mechanism involved their impact on the buoyant force of droplet size, viscosity, and steric hindrance of emulsion system. The emulsions stabilized by TP-CP exhibited robust environmental tolerance, but demonstrated sensitivity to Ca2+. Conclusively, the study demonstrated the potential application of the mixture of TP and CP as a natural polysaccharide emulsifier.
Collapse
Affiliation(s)
| | | | | | | | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China (W.H.); (X.H.); (J.Y.)
| |
Collapse
|
6
|
Wang Z, Li J, Peng C, Li B, Shen Q, Chen Y. Physicochemical Quantitative Analysis of the Oil-Water Interface as Affected by the Mutual Interactions between Pea Protein Isolate and Mono- and Diglycerides. Foods 2024; 13:176. [PMID: 38201204 PMCID: PMC10779286 DOI: 10.3390/foods13010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
As a commercially available ingredient, the mono- and diglycerides (MDG) were widely used in a plant protein-based emulsion to provide effective, functional, emulsifying properties. The simultaneous addition of the MDG and pea protein isolate (PPI) was investigated by the methods of interfacial rheology and quantitative protein proteomics. The physicochemical quantitative analysis of the oil-water interface revealed an interfacial stability mechanism for the protein adsorption layer. For a low MDG concentration, the interfacial quantities of vicilin and albumin were increased, which could be attributed to the adsorption rate. For a high MDG concentration, both vicilin and albumin were displaced by MDG and desorbed from the interface, while legumin was more difficult to displace due to its slow adsorption and the complex structure of protein molecules. The protein molecules with the structural rearrangement interacted with MDG, exhibiting potential effects on the interfacial film structure. Combined with some nanotechnologies, the new comprehension of protein-emulsifier interactions may promote food delivery systems. The research aims to develop an in-depth analysis of interfacial proteins, and provide more innovative and tailored functionalities for the application of the plant protein emulsion.
Collapse
Affiliation(s)
- Ziyan Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products and College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Jingwen Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (J.L.); (C.P.)
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (J.L.); (C.P.)
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Qian Shen
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products and College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
7
|
Jiang S, Li Q, Xu B, Zou T, Zhang Y, Ping W, Ma Q. Synthesis and Application of a Novel Multi-Branched Block Polyether Low-Temperature Demulsifier. Molecules 2023; 28:8109. [PMID: 38138594 PMCID: PMC10745829 DOI: 10.3390/molecules28248109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
In this paper, a low-temperature thick oil demulsifier with high polarity was prepared by introducing ethylene oxide, propylene oxide block, and butylene oxide using m-diphenol as a starting agent. The main reasons for the difficulty involved in the low-temperature emulsification of extractive fluids were explained by analyzing the synthetic influencing factors and infrared spectra of the star comb polymer (PR-D2) and by analyzing the four fractions, interfacial energies, and zeta potentials of crude oils from the Chun and Gao fields. The effects of PR-D2 surfactant on the emulsification performance of crude oil recovery fluids were investigated via indoor and field experiments. The experimental results indicate that the optimal synthesis conditions for this emulsion breaker are as follows: a quality ratio of ionic reaction intermediates and meso-diphenol of R = 10:1; 1 g of the initiator; a polymerization temperature of 80 °C; and a reaction time of 8 h. Colloidal asphaltenes in the crude oil were the main factor hindering the low-temperature demulsification of the Gao oilfield's extractive fluids, and the reason for the demulsification difficulty of the extractive fluids in the Chun oilfield is that the temperature of demulsification is lower than the wax precipitation point. The demulsification rate of the Chun oilfield's extractive fluids reached more than 98% when the PR-D2 concentration reached 150 mg/L at 43 °C. The demulsification rate of the Gao oilfield's extractive fluids reached more than 98% at a PR-D2 concentration of 150 mg/L at 65 °C. The field experiments show that the Chun oilfield's extractive fluids can still demulsify after the temperature is reduced to 43 °C in winter. The emulsification temperature of the Gao oilfield's extractive fluids was reduced from 73 °C to 68 °C, with an excellent demulsification effect.
Collapse
Affiliation(s)
- Shaohui Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum East China, Qingdao 266580, China;
| | - Qingsong Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum East China, Qingdao 266580, China;
| | - Botao Xu
- China Oilfield Services Limited, Tianjin 300450, China;
| | - Tao Zou
- Huabei Oilfield Company, China National Petroleum Corporation, Renqiu 062552, China;
| | - Yan Zhang
- Drilling & Production Engineering Technology Research Institute, CNPC Chuanqing Drilling Engineering Company Limited, Xi’an 710018, China;
| | - Wei Ping
- Fujian Provincial Company of National Petroleum and Natural Gas Pipeline Network Group, Fuzhou 350000, China;
| | - Qiang Ma
- CNPC Chuanqing Drilling Engineering Company Limited, Chengdu 610051, China;
| |
Collapse
|
8
|
Jiang S, Li Q, Ma Q, Xu B, Zou T. Efficient Demulsification Performance of Emulsified Condensate Oil by Hyperbranched Low-Temperature Demulsifiers. Molecules 2023; 28:7524. [PMID: 38005246 PMCID: PMC10673259 DOI: 10.3390/molecules28227524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Focusing on the problem of poor demulsification performance of light crude oil emulsions in low-permeability oilfields at low temperatures, the composition of the emulsion samples, clay particle size distribution, and the viscosity-temperature relationship curve of samples were analyzed. Based on the results of emulsion composition analysis and characteristics, the bottle test method was used to analyze the demulsifying effect of different commercial types of demulsifiers, revealing the demulsification mechanism. The field tests confirm the demulsification capabilities of Polyoxyethylene polyoxypropylene quaternized polyoxyolefins surfactants (PR demulsifiers). The results reveal that PR demulsifiers combine the features of decreasing the interfacial tension between oil and water and adsorbing SiO2, allowing for quick demulsification and flocculation at low temperatures. This research serves as a theoretical and practical foundation for the study and advancement of low-temperature demulsification technology in oilfields.
Collapse
Affiliation(s)
- Shaohui Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum East China, Qingdao 266580, China;
- Petroleum Engineering Technology Research Institute, Shengli Oil Field Branch, Sinopec, Dongying 257000, China
| | - Qingsong Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum East China, Qingdao 266580, China;
| | - Qiang Ma
- CNPC Chuanqing Drilling Engineering Company Limited, Chengdu 610051, China;
| | - Botao Xu
- China Oilfield Services Limited, Tianjin 300450, China;
| | - Tao Zou
- Huabei Oilfield Company, China National Petroleum Corporation, Renqiu 062552, China;
| |
Collapse
|
9
|
Qu Q, Li H, Li S, Hu Z, Zhu M, Chen J, Sun X, Tang Y, Zhang Z, Mi Y, Yu W. Synthesis and demulsification mechanism of an ionic liquid with four hydrophobic branches and four ionic centers. CHEMOSPHERE 2023; 340:139802. [PMID: 37598952 DOI: 10.1016/j.chemosphere.2023.139802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Stable emulsions can have numerous negative impacts on both the oil industry and the environment. This study focuses on the synthesis of two ionic liquids (via. PPBD and PPBH) with four hydrophobic branches and four ionic centers that can effectively treat oil-water emulsions at a low temperature of 40 °C. Their chemical structure was explored using Fourier-transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance hydrogen spectra (1H NMR). The effect of temperature, PPBD and PPBH concentration, oil-water ratio, salinity and pH value on the demulsification efficiency (DE) of W/O emulsion was studied detailly and several commercial demulsifiers were also used for comparison. Results revealed that by adding 250 mg/L of PPBH in an E30 emulsion and leaving it for 120 min at 40 °C, the DE could reach 96.34%. Meanwhile, in an E30 emulsion (oil-water mass ratio of 3:7) with 250 mg/L of PPBD, the DE of 95.23% could be obtained at 40 °C for 360 min. Especially, the DE of PPBH could reach 100% in an E70 emulsion (oil-water mass ratio of 7:3) at the same conditions. Additionally, the demulsifier (PPBH) exhibited excellent salt resistance and outperformed some commonly used commercial demulsifiers. Several methods were utilized to investigate the potential demulsification mechanism, including measuring interfacial tension (IFT), three-phase contact angle (CA), droplet contact time, zeta potential, and observing samples under optical microscopy.
Collapse
Affiliation(s)
- Qian Qu
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Huan Li
- National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields, Research Institute of Exploration and Development of PetroChina Changqing Oil Field Company, Xi'an, 710001, PR China
| | - Shuman Li
- National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields, Research Institute of Exploration and Development of PetroChina Changqing Oil Field Company, Xi'an, 710001, PR China
| | - Zhijie Hu
- National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields, Research Institute of Exploration and Development of PetroChina Changqing Oil Field Company, Xi'an, 710001, PR China
| | - Mingzhao Zhu
- The 3rd Oil Production Plant, PetroChina Changqing Oilfield Company, Yan'an, 717500, PR China
| | - Junhong Chen
- The 3rd Oil Production Plant, PetroChina Changqing Oilfield Company, Yan'an, 717500, PR China
| | - Xuebiao Sun
- The 3rd Oil Production Plant, PetroChina Changqing Oilfield Company, Yan'an, 717500, PR China
| | - Yuqi Tang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Zejun Zhang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Yuanzhu Mi
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China.
| | - Weichu Yu
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China.
| |
Collapse
|
10
|
Javadian S, Sadrpoor SM, Khosravian M. Taking a look accurately at the alteration of interfacial asphaltene film exposed to the ionic surfactants as demulsifiers. Sci Rep 2023; 13:12837. [PMID: 37553504 PMCID: PMC10409716 DOI: 10.1038/s41598-023-39731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023] Open
Abstract
The water droplets surrounded by a rigid interfacial asphaltene (ASP) film is one of the major setbacks in the petroleum industry. In this study, the properties of the interfacial ASP films around water droplets exposed to ionic surfactants as demulsifier were investigated. According to molecular dynamics (MD) simulation, the anionic surfactants are more effective than the cationic surfactant in the demulsification process since the anionic surfactants have the exact desire to localize not only near the ASP molecules but also near the water molecules. It has been found that it is likely to cause film changes and ruptures. Also, the MD simulation results for the desired surfactant, anionic surfactant, demonstrated that an increase in the surfactant concentration had an adverse effect on the system by hindering the change in the interfacial film. The increase in the temperature along with the enhancement in the adsorption rate of the surfactant results in the better performance of the demulsifier. Taking the MD and quantum results into account, the film deformation is a decisive factor in demulsification. The quantum computation has indicated that the electrostatic interactions play a significant role in selecting the attraction position and adsorption energy of the surfactant molecules.
Collapse
Affiliation(s)
- Soheila Javadian
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Islamic Republic of Iran.
| | - S Morteza Sadrpoor
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Islamic Republic of Iran
| | - Mahnaz Khosravian
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Islamic Republic of Iran.
| |
Collapse
|
11
|
Novel polymer nanoparticles with core-shell structure for breaking asphaltenes-stabilized W/O and O/W emulsions. J Colloid Interface Sci 2023; 640:296-308. [PMID: 36863185 DOI: 10.1016/j.jcis.2023.02.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
HYPOTHESIS The removal of stable water-in-oil (W/O) or oil-in-water (O/W) emulsions has been a challenging issue in chemical and oil industry for decades. Traditional demulsifiers were generally designed specifically for treating either W/O or O/W emulsions. A demulsifier that is effective for treating both types of emulsions will be highly desired. EXPERIMENTS Novel polymer nanoparticles (PBM@PDM) was synthesized as a demulsifier for treating both W/O and O/W emulsions prepared by toluene, water, and asphaltenes. The morphology and chemical composition of synthesized PBM@PDM were characterized. Demulsification performance and interaction mechanisms including interfacial tension, interfacial pressure, surface charge properties and surface forces were systematically studied. FINDINGS PBM@PDM could immediately prompt the coalescence of water droplets upon addition and effectively release the water in asphaltenes-stabilized W/O emulsion. In addition, PBM@PDM successfully destabilized asphaltenes-stabilized O/W emulsion. Not only could PBM@PDM substitute the asphaltenes adsorbed at the water-toluene interface, but they could also dominate the water-toluene interfacial pressure in competition with asphaltenes. The steric repulsion between interfacial asphaltene films could be suppressed in the presence of PBM@PDM. Surface charges significantly influenced the stability of asphaltenes-stabilized O/W emulsion. This work provides useful insights into the interaction mechanisms of asphaltene-stabilized W/O and O/W emulsions.
Collapse
|
12
|
Shi F, Wu J, Li Z, Zhao B, Li J, Tang S, Tuo W. Performance Evaluation and Action Mechanism Analysis of a Controllable Release Nanocapsule Profile Control and Displacement Agent. Polymers (Basel) 2023; 15:polym15030609. [PMID: 36771910 PMCID: PMC9921053 DOI: 10.3390/polym15030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
With the acceleration in oilfield developments, reservoir advantage channels have been gradually developed. This has led to ineffective circulation in the oilfield injection system and a significant decrease in production. The profile control and displacement technology of low-permeability and heterogeneous reservoirs are in urgent need of updating. In this paper, an intelligent profile control and displacement agent is proposed. The controlled release mechanism and profile control and displacement mechanism is clarified by physical simulation experiments. The profile control agent is a nanocapsule with environmental response and controlled release. The structure of the capsule is a core-shell structure, which is composed of an amphiphilic copolymer AP-g-PNIPAAM and Janus functional particles. The surface chemical stability of the micro/nanocapsule is analyzed by a potentiometric method. The study shows that a temperature at 45 °C causes a potential change in the micro/nanocapsule, indicating that the micro/nanocapsule has a slow release at this temperature. When the temperature is in the range of 40 to 45 °C, the absorbance greatly increases; therefore, it is considered that the capsule wall LCST is about 45 °C. Heating causes the surface contraction of the capsule wall to intensify, the micropores in the capsule wall to increase, the release amount to increase and the release rate per unit time to increase. The release time increases proportionally with the increase in capsule wall thickness. When the release time is the same, an alkaline or acidic environment can improve the release rate of the nanocapsule. The effect of profile control and flooding is evaluated through different differential core models. The research shows that the controlled release micro/nanocapsule has a good environmental response and the internal components can be effectively controlled by adjusting the temperature or pH value. This research has shown that the nanocapsules have good application prospects in low-permeability heterogeneous reservoirs.
Collapse
Affiliation(s)
- Fang Shi
- Key Laboratory for EOR Technology (Ministry of Education), Northeast Petroleum University, Daqing 163318, China
- Correspondence: (F.S.); (J.W.)
| | - Jingchun Wu
- Key Laboratory for EOR Technology (Ministry of Education), Northeast Petroleum University, Daqing 163318, China
- Correspondence: (F.S.); (J.W.)
| | - Zhongcheng Li
- PetroChina Jilin Oilfield Co., Exploration and Development Research Institute of Jilin Oilfield Branch Songyuan, Songyuan 138000, China
| | - Bo Zhao
- Daqing Oil Field Co., Ltd., No. 6 Oil Production Plant, Daqing 163000, China
| | - Jian Li
- PetroChina Tarim Oilfield Company, Korla 841000, China
| | - Shenglan Tang
- PetroChina Tarim Oilfield Company, Korla 841000, China
| | - Weizhi Tuo
- PetroChina Tarim Oilfield Company, Korla 841000, China
| |
Collapse
|
13
|
Xia X, Ma J, Geng S, Liu F, Yao M. A Review of Oil-Solid Separation and Oil-Water Separation in Unconventional Heavy Oil Production Process. Int J Mol Sci 2022; 24:74. [PMID: 36613516 PMCID: PMC9820792 DOI: 10.3390/ijms24010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Unconventional heavy oil ores (UHO) have been considered an important part of petroleum resources and an alternative source of chemicals and energy supply. Due to the participation of water and extractants, oil-solid separation (OSS) and oil-water separation (OWS) processes are inevitable in the industrial separation processes of UHO. Therefore, this critical review systematically reviews the basic theories of OSS and OWS, including solid wettability, contact angle, oil-solid interactions, structural characteristics of natural surfactants and interface characteristics of interfacially active asphaltene film. With the basic theories in mind, the corresponding OSS and OWS mechanisms are discussed. Finally, the present challenges and future research considerations are touched on to provide insights and theoretical fundamentals for OSS and OWS. Additionally, this critical review might even be useful for the provision of a framework of research prospects to guide future research directions in laboratories and industries that focus on the OSS and OWS processes in this important heavy oil production field.
Collapse
Affiliation(s)
- Xiao Xia
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Jun Ma
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Shuo Geng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Fei Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Mengqin Yao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| |
Collapse
|
14
|
Gong H, Luo X, Peng Y, Yu B, Yang Y, Zhang H. Simulation on the influence of inlet velocity and solid separation gap on the separation characteristics of a separating device for three phases: oil, water and solid. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Hassanshahi N, Hu G, Li J. Investigation of Dioctyl Sodium Sulfosuccinate in Demulsifying Crude Oil-in-Water Emulsions. ACS OMEGA 2022; 7:33397-33407. [PMID: 36157775 PMCID: PMC9494675 DOI: 10.1021/acsomega.2c04022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
This research investigated the performance of dioctyl sodium sulfosuccinate (DSS), a double-chain anionic surfactant, in breaking crude oil-in-water emulsions. The response surface methodology was used to consider the effect of the DSS concentration, oil concentration, and shaking time on demulsification efficiency and obtain optimum demulsification conditions. Further single-factor experiments were conducted to investigate the effects of salinity, crude oil conditions (fresh and weathered), and gravity separation settling time. The results showed that DSS efficiently demulsified stable emulsions under different oil concentrations (500-3000 mg/L) within 15 min shaking time. Increasing DSS concentration to 900 mg/L (critical micelle concentration) increased the demulsification efficiency to 99%. DSS not only improved the demulsification efficiency but also did not impede the demulsifier interfacial adsorption at the oil-water interface due to the presence of the double-chain structure. The low molecular weight enables the homogeneous distribution of DSS molecules in the emulsion, leading to a high demulsification efficiency within 15 min. Analysis of variance results indicated the importance of considering the interaction of oil concentration and shaking time in demulsification. DSS could reduce the total extractable petroleum hydrocarbons in the separated water to <10 mg/L without gravity separation and could achieve promising demulsification performance at high salinity (36 g/L) and various concentrations of fresh and weathered oil. The demulsification mechanism was explained by analyzing the microscopic images and the transmittance of the emulsion. DSS could be an efficient double-chain anionic surfactant in demulsifying stable oil-in-water emulsions.
Collapse
Affiliation(s)
- Nahid Hassanshahi
- Environmental
Engineering Program, University of Northern
British Columbia, Prince
George, British Columbia V2N4Z9, Canada
| | - Guangji Hu
- School
of Engineering, University of British Columbia,
Okanagan, Kelowna, British Columbia V1V 1V7, Canada
| | - Jianbing Li
- Environmental
Engineering Program, University of Northern
British Columbia, Prince
George, British Columbia V2N4Z9, Canada
| |
Collapse
|
16
|
Elsharaky E, El-Tabei AS, El-Tabey AE. The Influence of Newly Synthesized Demulsifiers on the Interfacial Rheological Properties of a Naturally Occurring Water/Oil Emulsion. ACS OMEGA 2022; 7:32471-32480. [PMID: 36119982 PMCID: PMC9476176 DOI: 10.1021/acsomega.2c03958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
This research aimed to synthesize new polymeric nonionic demulsifiers (DA, DB, and DC) to break 50% of naturally occurring water/oil emulsions. The prepared demulsifiers were synthesized in only two stages utilizing simple techniques. 1H and 13CNMR, MS, and FTIR spectroscopies were performed to validate the chemical composition of the synthesized demulsifiers. The relative solubility number (RSN) and partition coefficient (K p) were determined for the three demulsifiers. The interfacial tension (IFT) and dehydration ratios of DA, DB, DC, and their triblock copolymers were investigated. Also, interfacial rheological properties for the three demulsifiers were measured. The findings demonstrate that DB possesses a higher RSN value than DA and DC owing to its hydrophilicity. DC exhibited the lowest IFT value compared to DA, DB, and their corresponding triblock copolymers. DB and DC are more effective in demulsifying than DA and triblock copolymers. DC achieved a 100% dehydration ratio at a low dosage of 75 ppm after 120 min. DC's remarkable performance can be attributed to its aromatic core, molecular weight, and high interfacial activity. According to the rheological data, a higher dehydrating ratio is attained when the demulsifier has a great capacity to lower the viscoelasticity of the W/O emulsion interface. The maximum decrease in G' and G″ values was attained by DC. The mechanism of DC's demulsifying interaction on a naturally occurring W/O emulsion was elucidated.
Collapse
|
17
|
Cui G, Zhang Q, Zhao Q, Wang Z, Tang T, He X, Cui S, Li X, Liu Y. Synthesis of branched chitosan derivatives for demulsification and steel anti-corrosion performances investigation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Demulsification of (W1+W2+W3)/O Reverse Cerberus Emulsion from Vibrational Emulsification. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Freshly Milled Quartz Particles Obtained from River Sand as an Efficient Natural Demulsifier for Crude Oil Emulsions. Processes (Basel) 2022. [DOI: 10.3390/pr10050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Saline water necessarily contained in crude oil forms complex and stable water-in-oil (w/o) emulsions with oil. Due to the negative impact of this emulsion on the oil’s transportation and refining, special materials are added to help break the emulsion and separate water. Herein, a comparative study of the demulsifying ability concerning w/o emulsion of the original and freshly milled quartz (FMQ) particles isolated from river sand was carried out. The effect of quartz with a mesh size of 75 μm on reducing emulsion stability was investigated using rheological measurements, interfacial tension measurements, demulsification tests, as well as routine methods for characterizing solid and liquid materials. With the addition of 3 wt% FMQ, 97% demulsification efficiency was achieved after 100 min of settling, against 140 min for the original quartz. The role of milling quartz is to increase the ability of water to adhere and thus locally increase the pH value; this results in a reduction in the stability of the emulsion and its destruction. The prolonging effect of quartz milling lasted about 2.5–3.0 h, after which the demulsifying ability of milled quartz became comparable to that of the starting material.
Collapse
|
20
|
Alara OR, Abdurahman NH, Tade MO, Ali HA, Alao KT. Demulsifier: An Important Agent in Breaking Crude Oil Emulsions. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Oluwaseun Ruth Alara
- Universiti Malaysia Pahang Department of Chemical Engineering College of Engineering 26300 Gambang Pahang Malaysia
| | - Nour Hamid Abdurahman
- Universiti Malaysia Pahang Department of Chemical Engineering College of Engineering 26300 Gambang Pahang Malaysia
| | - Moses Oludayo Tade
- Curtin University Department of Chemical Engineering GPO Box U1987 6845 Perth WA Australia
| | - Hassan Alsaggaf Ali
- Eastern Unity Technology Suite 01, 12th Floor Plaza, 138 Annex Hotel Maya, Jalan Ampang 50450 Kuala Lumpur Malaysia
| | - Kehinde Temitope Alao
- Universiti Malaysia Pahang Department of Chemical Engineering College of Engineering 26300 Gambang Pahang Malaysia
| |
Collapse
|
21
|
Meng Y, Xue Q, Chen J, Li Y, Shao Z. Structure, stability, rheology, and texture properties of ε-polylysine-whey protein complexes. J Dairy Sci 2022; 105:3746-3757. [DOI: 10.3168/jds.2021-21219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/22/2022] [Indexed: 01/13/2023]
|
22
|
Ma J, Yao M, Yang Y, Zhang X. Comprehensive review on stability and demulsification of unconventional heavy oil-water emulsions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118510] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Preparation of a demulsifier using rice straw as raw materials via a simple acid treatment process. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Qi P, Sun D, Wu T, Li Y. Stress proteins, nonribosomal peptide synthetases, and polyketide synthases regulate carbon sources-mediated bio-demulsifying mechanisms of nitrate-reducing bacterium Gordonia sp. TD-4. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126900. [PMID: 34418829 DOI: 10.1016/j.jhazmat.2021.126900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/25/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Carbon sources have been reported to determine the bio-demulsifying performance and mechanisms. However, the genetic regulation of carbon sources-mediated bio-demulsification remains unclear. Here, the effects of β-oxidation, stress response, and nitrate metabolism on the demulsification of alkaline-surfactant-polymer flooding produced water by Gordonia sp. TD-4 were investigated. The results showed that competitive adsorption-derived demulsification was mediated by oil-soluble carbon sources (paraffin). Surface-active lipopeptides responsible for competitive adsorption-derived demulsification could be biosynthesized by the nonribosomal peptide synthetases and polyketide synthases using oil-soluble carbon sources. Bio-flocculation-derived demulsification was mediated by water-soluble carbon sources. Water-soluble carbon sources (sodium acetate and glucose) mediated the process of the dissimilatory reduction of nitrate to ammonia, which resulted in the variable accumulation of nitrite. The accumulated nitrite (>180 mg-N/L) stimulated stress response and induced the upregulation of chaperone-associated genes. The upregulation of chaperonins increased the cell surface hydrophobicity and the cation-dependent bio-flocculating performance, which were responsible for bio-flocculation-derived demulsification. The β-oxidation of fatty acids significantly affected both competitive adsorption-derived demulsification and bio-flocculation-derived demulsification. This study illustrates the synergistic effects of nitrogen sources and carbon sources on the regulation of bio-demulsifying mechanisms of TD-4 and identifies two key functional gene modules responsible for the regulation of bio-demulsifying mechanisms.
Collapse
Affiliation(s)
- Panqing Qi
- Shandong Provincial Research Center for Water Pollution Control, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Dejun Sun
- Key Laboratory of Colloid and Interface Science of Education Ministry, Shandong University, Jinan 250100, PR China
| | - Tao Wu
- Key Laboratory of Colloid and Interface Science of Education Ministry, Shandong University, Jinan 250100, PR China.
| | - Yujiang Li
- Shandong Provincial Research Center for Water Pollution Control, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
25
|
Queiroz DG, Silva CMF, Minale M, Merino D, Lucas EF. The effect of monoethylene glycol on the stability of water‐in‐oil emulsions. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Danielle G. Queiroz
- Universidade Federal do Rio de Janeiro Instituto de Macromoléculas, Laboratório de Macromoléculas e Coloides na Indústria do Petróleo Rio de Janeiro Brazil
| | - Carla M. F. Silva
- Universidade Federal do Rio de Janeiro, COPPE/PEMM, Laboratório de Aditivos Poliméricos para Produção de Petróleo Rio de Janeiro Brazil
| | - Mario Minale
- Department of Engineering Università della Campania ‘Luigi Vanvitelli’ Aversa Italy
| | | | - Elizabete F. Lucas
- Universidade Federal do Rio de Janeiro Instituto de Macromoléculas, Laboratório de Macromoléculas e Coloides na Indústria do Petróleo Rio de Janeiro Brazil
- Universidade Federal do Rio de Janeiro, COPPE/PEMM, Laboratório de Aditivos Poliméricos para Produção de Petróleo Rio de Janeiro Brazil
| |
Collapse
|
26
|
Feng XJ, Tang YJ, Yang Y, Wang G, Mei P, Lai L. Relationship between the dynamic interfacial activity and demulsification performance of hyperbranched poly(amido amine) polyethers. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127869] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Li Z, Chakraborty A, Fuentes J, Zamora E, Vázquez F, Xu Z, Liu Q, Flores C, McCaffrey WC. Study on demulsifier crude oil interactions at oil-water interface for crude oil dehydration. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Yao L, Selmi A, Esmaeili H. A review study on new aspects of biodemulsifiers: Production, features and their application in wastewater treatment. CHEMOSPHERE 2021; 284:131364. [PMID: 34216919 DOI: 10.1016/j.chemosphere.2021.131364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/15/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
The effluent produced in refineries is in the form of an oil/water emulsion that must be treated. These emulsions are often stable and a suitable method must be used to separate the oil from the emulsion. Recently, biosurfactants or biodemulsifiers have received much attention to reduce the interfacial tension between two liquids. Biodemulsifiers are produced by microorganisms and have several benefits over chemical demulsifiers such as low-toxic, biodegradability, eco-friendly and easy synthesis. They can eliminate two phases by changing the interfacial forces between the water and oil molecules. Biosurfactants are categorized based on the molecular weight of their compounds (low or high molecular weight). Sophorolipids, lipopeptides rhamnolipids, trehalolipids, glycolipid, lipoproteins, lichenysin, surfactin, and polymeric biosurfactants are several types of biosurfactants, which are produced by bacteria or fungi. This review study provides a deep evaluation of biosurfactants in the demulsification process. To this end, different types of biosurfactants, the synthesis method of various biosurfactants using various microorganisms, features of biosurfactants, and the role of biodemulsifiers in the demulsification process are thoroughly discussed. Also, the impact of various efficient factors like pH, microorganism type, temperature, the oil content in the emulsion, and gravity on biodemulsificaion was studied. Finally, the mechanism of the demulsification process was discussed. According to previous studies, rhamnolipid biodemulsifier showed the highest biodemulsification efficiency (100%) in the removal of oil from an emulsion.
Collapse
Affiliation(s)
- Lei Yao
- College of Civil and Architecture Engineering, Chuzhou University, Chuzhou, 239000, Anhui, China.
| | - Abdellatif Selmi
- Department of Civil Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; Ecole Nationale d'Ingénieurs deTunis (ENIT), Civil Engineering Laboratory, B.P. 37, Le Belvédère1002, Tunis, Tunisia
| | - Hossein Esmaeili
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| |
Collapse
|
29
|
Dhandhi Y, Chaudhari RK, Naiya TK. Development in separation of oilfield emulsion toward green technology – A comprehensive review. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1995427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yogesh Dhandhi
- Department of Petroleum Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Ronak Kumar Chaudhari
- Department of Petroleum Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Tarun Kumar Naiya
- Department of Petroleum Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| |
Collapse
|
30
|
Qiu Z, Gong H, Peng Y, Chen L, Yu B, Liao Z. Influence of different type of inlet pipe on the separation characteristic of double-field coupling demulsification and dewatering device. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.2002895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhi Qiu
- Chongqing Key Laboratory of Manufacturing Equipment Mechanism Design and Control, Chongqing Technology and Business University, Chongqing, China
| | - Haifeng Gong
- Engineering Research Centre for Waste Oil Recovery Technology and Equipment of Ministry of Education, Chongqing Technology and Business University, Chongqing, China
| | - Ye Peng
- Chongqing Key Laboratory of Manufacturing Equipment Mechanism Design and Control, Chongqing Technology and Business University, Chongqing, China
- Engineering Research Centre for Waste Oil Recovery Technology and Equipment of Ministry of Education, Chongqing Technology and Business University, Chongqing, China
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Ling Chen
- Engineering Research Centre for Waste Oil Recovery Technology and Equipment of Ministry of Education, Chongqing Technology and Business University, Chongqing, China
| | - Bao Yu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Zhixiang Liao
- Chongqing Key Laboratory of Manufacturing Equipment Mechanism Design and Control, Chongqing Technology and Business University, Chongqing, China
| |
Collapse
|
31
|
Feng K, Gao N, Li W, Dong H, Sun F, He G, Zhou K, Zhao H, Li G. Arrested Coalescence of Ionic Liquid Droplets: A Facile Strategy for Spatially Organized Multicompartment Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104385. [PMID: 34643335 DOI: 10.1002/smll.202104385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Multicompartment assemblies attract much attention for their wide applications. However, the fabrication of multicompartment assemblies usually requires elaborately designed building blocks and careful controlling. The emergence of droplet networks has provided a facile way to construct multiple droplet architectures, which can further be converted to multicompartment assemblies. Herein, the bind motif-free building blocks are presented, which consist of the hydrophobic Tf2 N- -based ionic liquid (IL) dissolving LiTf2 N salt, that can conjugate via arrested coalescence in confined-space templates to form IL droplet networks. Subsequent ultraviolent polymerization generates robust free-standing multicompartment assemblies. The conjugation of building blocks relies not on the peripheral bind motif but on the interfacial instability-induced arrested coalescence, avoiding tedious surface modification and assembly process. By tuning structures of templates and building blocks, multicompartment assemblies with 0D, 1D, 2D, and 3D structures are prepared in a facile and high-throughput way. Importantly, the bottom-up construction enables modular control over the compositions and spatial positions of individual building blocks. Combining with the excellent solvency of ILs, this system can serve as a general platform towards versatile multicompartment architectures. As demonstrations, by tailoring the chambers the multicompartment assemblies can spatiotemporally sense and report the chemical cues and perform various modes of motion.
Collapse
Affiliation(s)
- Kai Feng
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Ning Gao
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Wenyun Li
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Hao Dong
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Fuwei Sun
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Guokang He
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Kang Zhou
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Hongwei Zhao
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| | - Guangtao Li
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
32
|
De-emulsification performance and mechanism of β-CD reverse demulsifier for amphiphilic polymer oil in water (O/W) emulsion. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Alao KT, Alara OR, Abdurahman NH. Trending approaches on demulsification of crude oil in the petroleum industry. APPLIED PETROCHEMICAL RESEARCH 2021. [DOI: 10.1007/s13203-021-00280-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AbstractThe complicated nature of crude oil emulsions is part of the major setbacks associated with the postulation of methods for phase separation and demulsification in the oil industry. Despite the increasing efforts in generating efficient and dependable demulsification methods, the majority of emulsions cannot be shattered in reduced times. This review examines the trending techniques of crude oil demulsification in the petroleum industry. Several approaches have been examined to discover the best method of demulsification. Hence, this reports reviewed the past studies on the emulsion, formation of oil emulsions, methods of demulsification, characteristics of demulsifier, mechanism of demulsification, kinetics in demulsification, operating parameters influencing the demulsification processes, the structure of demulsifier, and formulations that are involved in the demulsification. The formulations of crude oil demulsification have been investigated to unveil adequate demulsifiers for crude oil. Therefore, demulsification approaches have several applications due to wider varieties of crude oil, separation equipment, brines, chemical demulsifiers, the method in which demulsifiers is been formulated, and product specifications.
Collapse
|
34
|
Jiang H, Kang W, Li X, Peng L, Yang H, Li Z, Wang J, Li W, Gao Z, Turtabayev S. Stabilization and performance of a novel viscoelastic N2 foam for enhanced oil recovery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Dinh HHQ, Santanach-Carreras E, Lalanne-Aulet M, Schmitt V, Panizza P, Lequeux F. Effect of a Surfactant Mixture on Coalescence Occurring in Concentrated Emulsions: The Hole Nucleation Theory Revisited. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8726-8737. [PMID: 34266236 DOI: 10.1021/acs.langmuir.1c00975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
By conducting both a bottle test and isolate drop-drop experiments, we determine the coalescence rates of water droplets within water-in-oil emulsions stabilized by a large amount of Span 80 in the presence of Tween 20, a surfactant that acts as a demulsifier. Using a microscopic model based on a theory of hole nucleation, we establish an analytical formula that quantitatively predicts the coalescence frequency per unit area of droplets whose interfaces are fully covered by surfactant molecules. Despite its simplicity and the strong assumptions made for its derivation, this formula captures our experimental findings on Span 80-stabilized emulsions as well as other results, found in the literature, remarkably well on a wide range of water-in-crude oil systems.
Collapse
Affiliation(s)
- Huy-Hong-Quan Dinh
- Laboratoire Physico-Chimie des Interfaces Complexes, Bâtiment CHEMSTARTUP, RD 817, 64170 Lacq, France
- TOTAL S.A., Pôle d'Etudes et de Recherches de Lacq, BP 47, 64170 Lacq, France
| | - Enric Santanach-Carreras
- Laboratoire Physico-Chimie des Interfaces Complexes, Bâtiment CHEMSTARTUP, RD 817, 64170 Lacq, France
- TOTAL S.A., Pôle d'Etudes et de Recherches de Lacq, BP 47, 64170 Lacq, France
| | - Marie Lalanne-Aulet
- Laboratoire Physico-Chimie des Interfaces Complexes, Bâtiment CHEMSTARTUP, RD 817, 64170 Lacq, France
| | - Véronique Schmitt
- Centre de Recherche Paul Pascal, 115 Avenue Schweitzer, 33600 Pessac, France
| | - Pascal Panizza
- IPR, UMR CNRS 6251, Campus Beaulieu, Université Rennes 1, 35042 Rennes, France
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS UMR 7615 , 75005 Paris, France
| | - François Lequeux
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS UMR 7615 , 75005 Paris, France
| |
Collapse
|
36
|
Portnov IY, Ponikarov SI, Solovyev SA, Solovyeva OV. Separator on the Principle of Gravitational-Dynamic Separation of Emulsions (Water–Oil Type) for Solving Various Problems of Oil and Gas Production, Petrochemistry, and Ecology. CHEMICAL AND PETROLEUM ENGINEERING 2021. [DOI: 10.1007/s10556-021-00905-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Structural and interfacial characterization of oil bodies extracted from Camellia oleifera under the neutral and alkaline condition. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Zhu X, Zhu L, Li H, Xue J, Ma C, Yin Y, Qiao X, Sun D, Xue Q. Multifunctional charged hydrogel nanofibrous membranes for metal ions contained emulsified oily wastewater purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118950] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Synthesis and application of geminal dicationic ionic liquids and poly (ionic liquids) combined imidazolium and pyridinium cations as demulsifiers for petroleum crude oil saline water emulsions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Fuentes JV, Zamora EB, Li Z, Xu Z, Chakraborty A, Zavala G, Vázquez F, Flores C. Alkylacrylic-carboxyalkylacrylic random bipolymers as demulsifiers for heavy crude oils. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Zhao H, Kang W, Yang H, Huang Z, Zhou B, Sarsenbekuly B. Emulsification and stabilization mechanism of crude oil emulsion by surfactant synergistic amphiphilic polymer system. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125726] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Piroozian A, Hemmati M, Safari M, Rahimi A, Rahmani O, Aminpour SM, Pour AB. A mechanistic understanding of the water-in-heavy oil emulsion viscosity variation: effect of asphaltene and wax migration. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125604] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Ali N, Bilal M, Khan A, Ali F, Nasir Mohamad Ibrahim M, Gao X, Zhang S, Hong K, M. N. Iqbal H. Engineered Hybrid Materials with Smart Surfaces for Effective Mitigation of Petroleum-originated Pollutants. ENGINEERING 2020. [DOI: 10.1016/j.eng.2020.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Synthesis of erucic amide propyl betaine compound fracturing fluid system. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Zhang Z, Song J, Lin YJ, Wang X, Biswal SL. Comparing the Coalescence Rate of Water-in-Oil Emulsions Stabilized with Asphaltenes and Asphaltene-like Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7894-7900. [PMID: 32597186 DOI: 10.1021/acs.langmuir.0c00966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Asphaltenes are a significant contributor to flow assurance problems related to crude oil production. Because of their polydispersity, model molecules such as coronene and violanthrone-79 (VO-79) have been used as mimics to represent the physiochemical properties of asphaltenes. This work aims to evaluate the emulsion-stabilization characteristics of fractionated asphaltenes and these two model molecules. Such evaluation is expected to better characterize the stabilizing mechanisms of asphaltenes on water-in-oil emulsions. The coalescence process of water-in-oil emulsion droplets is visualized using a microfluidic flow-focusing geometry. The rate of coalescence events is used as the parameter to assess emulsion stability. Interfacial tension (IFT) and oil/brine zeta potential are measured to help explain the differences in the rates of coalescence. VO-79 is found to be better at stabilizing emulsions as compared to coronene. Although VO-79 and asphaltenes have similar interfacial tension and oil/brine zeta potential values, the rate of coalescence differs significantly. This highlights the difficulty in using model molecules to mimic the transport dynamics of asphaltenes.
Collapse
Affiliation(s)
- Zhuqing Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jin Song
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Yu-Jiun Lin
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Xinglin Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
46
|
Ismail AI, Atta AM, El-Newehy M, El-Hefnawy ME. Synthesis and Application of New Amphiphilic Asphaltene Ionic Liquid Polymers to Demulsify Arabic Heavy Petroleum Crude Oil Emulsions. Polymers (Basel) 2020; 12:polym12061273. [PMID: 32498350 PMCID: PMC7362221 DOI: 10.3390/polym12061273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022] Open
Abstract
Asphaltenes are heavy petroleum crude oil components which limit the production of petroleum crude oil due to their aggregation and their stabilization for all petroleum crude oil water emulsions. The present study aimed to modify the chemical structures of isolated asphaltenes by converting them into amphiphilic polymers containing ionic liquid moieties (PILs) to demulsify the emulsion and replace the asphaltene layers surrounding the oil or water droplets in petroleum crude oil emulsions. The literature survey indicated that no modification occurred to produce the PILs from the asphaltenes. In this respect, the asphaltenes were modified via oxidation of the lower aliphatic chain through carboxylation followed by conversion to asphaltene acid chloride that reacted with ethoxylated N-alkyl pyridinium derivatives. Moreover, the carboxylation of asphaltenes was carried out through the Diels–Alder reaction with maleic anhydride that was linked with ethoxylated N-alkyl pyridinium derivatives to produce amphiphilic asphaltene PILs. The produced PILs from asphaltenes acid chloride and maleic anhydride were designated as AIL and AIL-2. The chemical structure and thermal stability of the polymeric asphaltene ionic liquids were evaluated. The modified structure of asphaltenes AIL and AIL-2 exhibited different thermal characteristics involving glass transition temperatures (Tg) at −68 °C and −45 °C, respectively. The new asphaltenes ionic liquids were adsorbed at the asphaltenes surfaces to demulsify the heavy petroleum crude emulsions. The demulsification data indicated that the mixing of AIL and AIL-2 100 at different ratios with ethoxylated N-alkyl pyridinium were demulsified with 100% of the water from different compositions of O:W emulsions 50:50, 90:10, and 10:90. The demulsification times for the 50:50, 90:10, and 10:90 O:W emulsions were 120, 120, and 60 min, respectively. The interaction of the PILs with asphaltene and mechanism of demulsification was also investigated.
Collapse
Affiliation(s)
- Ali I. Ismail
- Department of Chemistry, Rabigh College of Arts and Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (A.I.I.); (A.M.A.)
| | - Ayman M. Atta
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: (A.I.I.); (A.M.A.)
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed E. El-Hefnawy
- Department of Chemistry, Rabigh College of Arts and Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
47
|
Ali N, Bilal M, Khan A, Ali F, Iqbal HM. Design, engineering and analytical perspectives of membrane materials with smart surfaces for efficient oil/water separation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115902] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
48
|
Corti-Monzón G, Nisenbaum M, Villegas-Plazas M, Junca H, Murialdo S. Enrichment and characterization of a bilge microbial consortium with oil in water-emulsions breaking ability for oily wastewater treatment. Biodegradation 2020; 31:57-72. [DOI: 10.1007/s10532-020-09894-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/05/2020] [Indexed: 01/09/2023]
|
49
|
Hjartnes TN, Mhatre S, Gao B, Sørland GH, Simon S, Sjöblom J. Demulsification of crude oil emulsions tracked by pulsed field gradient NMR. Part II: Influence of chemical demulsifiers in external AC electric field. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Overview on petroleum emulsions, formation, influence and demulsification treatment techniques. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.11.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|