1
|
de Avila Goncalves S, Ceccato BT, Moraes-Lacerda T, de Jesus MB, de la Torre LG, Vieira RP. Synthesis of poly[2-(dimethylamino)ethyl methacrylate] grafting from cellulose nanocrystals for DNA complexation employing a 3D-twisted cross-sectional microchannel microfluidic device. Int J Biol Macromol 2025; 305:140992. [PMID: 39952531 DOI: 10.1016/j.ijbiomac.2025.140992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/29/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Developing effective and safe non-viral gene vectors poses a challenge in gene therapy. A promising strategy emerged addressing this challenge, involving a synergistic approach combining biopolymers and cationic synthetic polymers to enhance gene delivery systems. In this study, for the first time, poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) was grafted from cellulose nanocrystals (CNC) using metal-free organocatalyzed atom-transfer radical polymerization (O-ATRP). The synthesis was confirmed through morphological, spectroscopic, and thermal analysis. The reaction achieved a 34 % monomer conversion and 15 % grafting, resulting in a CNC-g-PDMAEMA copolymer with impressive responsiveness to pH and temperature. Furthermore, CNC-g-PDMAEMA was utilized to obtain copolymer/pDNA polyplexes using a microfluidic device, providing a practical and efficient method for producing uniform, stable, and reproducible gene delivery systems. These polyplexes had sizes around 160 nm and a low PDI (<0.250). As a proof of concept, preliminary cell viability and transfection assays were conducted to demonstrate the biomaterial's applicability. These findings suggest that polyplexes (N/P = 15) at a 10 μg/mL concentration may serve as an upper limit threshold and a starting point for further in vivo studies. In summary, this research advances the development of gene delivery platforms through innovative and straightforward synthesis methods, opening up potential applications in gene therapy.
Collapse
Affiliation(s)
- Sayeny de Avila Goncalves
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| | - Bruno Telli Ceccato
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Thaís Moraes-Lacerda
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcelo Bispo de Jesus
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Lucimara Gaziola de la Torre
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Roniérik Pioli Vieira
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Eş I, Thakur A, Mousavi Khaneghah A, Foged C, de la Torre LG. Engineering aspects of lipid-based delivery systems: In vivo gene delivery, safety criteria, and translation strategies. Biotechnol Adv 2024; 72:108342. [PMID: 38518964 DOI: 10.1016/j.biotechadv.2024.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Defects in the genome cause genetic diseases and can be treated with gene therapy. Due to the limitations encountered in gene delivery, lipid-based supramolecular colloidal materials have emerged as promising gene carrier systems. In their non-functionalized form, lipid nanoparticles often demonstrate lower transgene expression efficiency, leading to suboptimal therapeutic outcomes, specifically through reduced percentages of cells expressing the transgene. Due to chemically active substituents, the engineering of delivery systems for genetic drugs with specific chemical ligands steps forward as an innovative strategy to tackle the drawbacks and enhance their therapeutic efficacy. Despite intense investigations into functionalization strategies, the clinical outcome of such therapies still needs to be improved. Here, we highlight and comprehensively review engineering aspects for functionalizing lipid-based delivery systems and their therapeutic efficacy for developing novel genetic cargoes to provide a full snapshot of the translation from the bench to the clinics. We outline existing challenges in the delivery and internalization processes and narrate recent advances in the functionalization of lipid-based delivery systems for nucleic acids to enhance their therapeutic efficacy and safety. Moreover, we address clinical trials using these vectors to expand their clinical use and principal safety concerns.
Collapse
Affiliation(s)
- Ismail Eş
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Headington, Oxford OX3 7DQ, UK.
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University 191002, 9 Lomonosova Street, Saint Petersburg, Russia.
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lucimara Gaziola de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Neary MT, Mulder LM, Kowalski PS, MacLoughlin R, Crean AM, Ryan KB. Nebulised delivery of RNA formulations to the lungs: From aerosol to cytosol. J Control Release 2024; 366:812-833. [PMID: 38101753 DOI: 10.1016/j.jconrel.2023.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In the past decade RNA-based therapies such as small interfering RNA (siRNA) and messenger RNA (mRNA) have emerged as new and ground-breaking therapeutic agents for the treatment and prevention of many conditions from viral infection to cancer. Most clinically approved RNA therapies are parenterally administered which impacts patient compliance and adds to healthcare costs. Pulmonary administration via inhalation is a non-invasive means to deliver RNA and offers an attractive alternative to injection. Nebulisation is a particularly appealing method due to the capacity to deliver large RNA doses during tidal breathing. In this review, we discuss the unique physiological barriers presented by the lung to efficient nebulised RNA delivery and approaches adopted to circumvent this problem. Additionally, the different types of nebulisers are evaluated from the perspective of their suitability for RNA delivery. Furthermore, we discuss recent preclinical studies involving nebulisation of RNA and analysis in in vitro and in vivo settings. Several studies have also demonstrated the importance of an effective delivery vector in RNA nebulisation therefore we assess the variety of lipid, polymeric and hybrid-based delivery systems utilised to date. We also consider the outlook for nebulised RNA medicinal products and the hurdles which must be overcome for successful clinical translation. In summary, nebulised RNA delivery has demonstrated promising potential for the treatment of several lung-related conditions such as asthma, COPD and cystic fibrosis, to which the mode of delivery is of crucial importance for clinical success.
Collapse
Affiliation(s)
- Michael T Neary
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | | | - Piotr S Kowalski
- School of Pharmacy, University College Cork, Ireland; APC Microbiome, University College Cork, Cork, Ireland
| | | | - Abina M Crean
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - Katie B Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
4
|
Eş I, Malfatti-Gasperini AA, de la Torre LG. The diffusion-driven microfluidic process to manufacture lipid-based nanotherapeutics with stealth properties for siRNA delivery. Colloids Surf B Biointerfaces 2022; 215:112476. [PMID: 35390597 DOI: 10.1016/j.colsurfb.2022.112476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023]
Abstract
Our study investigated the manufacturing of lipid-based nanotherapeutics with stealth properties for siRNA delivery by employing a diffusion-driven microfluidic process in one or two-steps strategies to produce siRNA-loaded lipid nanocarriers and lipoplexes, respectively. In the one-step synthesis, siRNA in the aqueous phase is introduced from one inlet, while phospholipids dispersed in anhydrous ethanol are introduced from other inlets, generating the lipid nanocarriers. In the two-steps strategies, the pre-formed liposomes are complexed with siRNA. The process configuration with an aqueous diffusion barrier exerts a significant effect on the nanoaggregates synthesis. Dynamic light scattering data showed that lipid nanocarriers had a bigger particle diameter (298 ± 24 nm) and surface charge (43 ± 6 mV) compared to lipoplexes (194 ± 7 nm and 37.0 ± 0.4 mV). Moreover, DSPE-PEG(2000) was included in the formulation to synthesize lipid-based nanotherapeutics containing siRNA with stealth characteristics. The inclusion of PEG-lipid resulted in an increase in the surface charge of lipoplexes (from 33.7 ± 4.4-54.3 ± 1.6 mV), while a significant decrease was observed in the surface charge of lipid nanocarriers (30.3 ± 8.7 mV). The different structural assemblies were identified for lipoplex and lipid nanocarriers using Synchrotron SAXS. Lipid nanocarriers present a lower amount of multilayers than lipoplexes. Lipid-PEG insertion significantly influenced lipid nanocarriers' characteristics, drastically decreasing the number of multilayers. This effect was not observed in lipoplexes. The association between process configuration, lipid composition, and its effect on the characteristics of lipid-based vector systems can generate fundamental insights, contributing to gene-based nanotherapeutics development.
Collapse
Affiliation(s)
- Ismail Eş
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; National Nanotechnology Research Center of Turkey (UNAM), Bilkent University, Ankara, Turkey
| | - Antonio A Malfatti-Gasperini
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil
| | - Lucimara Gaziola de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
5
|
Lai A, Leong N, Zheng D, Ford L, Nguyen TH, Williams HD, Benameur H, Scammells PJ, Porter CJH. Biocompatible Cationic Lipoamino Acids as Counterions for Oral Administration of API-Ionic Liquids. Pharm Res 2022; 39:2405-2419. [PMID: 35661084 PMCID: PMC9556374 DOI: 10.1007/s11095-022-03305-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Purpose The use of ionic liquids (ILs) in drug delivery has focused attention on non-toxic IL counterions. Cationic lipids can be used to form ILs with weakly acidic drugs to enhance drug loading in lipid-based formulations (LBFs). However, cationic lipids are typically toxic. Here we explore the use of lipoaminoacids (LAAs) as cationic IL counterions that degrade or digest in vivo to non-toxic components. Methods LAAs were synthesised via esterification of amino acids with fatty alcohols to produce potentially digestible cationic LAAs. The LAAs were employed to form ILs with tolfenamic acid (Tol) and the Tol ILs loaded into LBF and examined in vitro and in vivo. Results Cationic LAAs complexed with Tol to generate lipophilic Tol ILs with high drug loading in LBFs. Assessment of the LAA under simulated digestion conditions revealed that they were susceptible to enzymatic degradation under intestinal conditions, forming biocompatible FAs and amino acids. In vitro dispersion and digestion studies of Tol ILs revealed that formulations containing digestible Tol ILs were able to maintain drug dispersion and solubilisation whilst the LAA were breaking down under digesting conditions. Finally, in vivo oral bioavailability studies demonstrated that oral delivery of a LBF containing a Tol IL comprising a digestible cationic lipid counterion was able to successfully support effective oral delivery of Tol. Conclusions Digestible LAA cationic lipids are potential IL counterions for weakly acidic drug molecules and digest in situ to form non-toxic breakdown products. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03305-y.
Collapse
Affiliation(s)
- Anthony Lai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Nathania Leong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Dan Zheng
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Leigh Ford
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Uniquest, General Purpose South Building, Staff House Rd, The University of Queensland, QLD, 4072, Brisbane, Australia
| | - Tri-Hung Nguyen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Hywel D Williams
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- CSL Limited, 45 Poplar Road, Parkville, VIC, 3052, Australia
| | - Hassan Benameur
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
6
|
Maeki M, Uno S, Niwa A, Okada Y, Tokeshi M. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. J Control Release 2022; 344:80-96. [PMID: 35183654 PMCID: PMC8851889 DOI: 10.1016/j.jconrel.2022.02.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/29/2022]
Abstract
In 2021, mRNA vaccines against COVID-19 were approved by the Food and Drug Administration. mRNA vaccines are important for preventing severe COVID-19 and returning to normal life. The development of RNA-delivery technology, including mRNA vaccines, has been investigated worldwide for ~30 years. Lipid nanoparticles (LNPs) are a breakthrough technology that stably delivers RNA to target organs, and RNA-loaded LNP-based nanomedicines have been studied for the development of vaccines and nanomedicines for RNA-, gene-, and cell-based therapies. Recently, microfluidic devices and technologies have attracted attention for the production of LNPs, particularly RNA-loaded LNPs. Microfluidics provides many advantages for RNA-loaded LNP production, including precise LNP size controllability, high reproducibility, high-throughput optimization of LNP formulation, and continuous LNP-production processes. In this review, we summarize microfluidic-based RNA-loaded LNP production and its applications in RNA-based therapy and genome editing.
Collapse
Affiliation(s)
- Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan; JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Shuya Uno
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Ayuka Niwa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Yuto Okada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| |
Collapse
|
7
|
Carvalho BG, Garcia BBM, Malfatti-Gasperini AA, Han SW, de la Torre LG. Hybrid polymer/lipid vesicle synthesis: Association between cationic liposomes and lipoplexes with chondroitin sulfate. Colloids Surf B Biointerfaces 2021; 210:112233. [PMID: 34838413 DOI: 10.1016/j.colsurfb.2021.112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
The association of cationic carriers with different anionic mucoadhesive biopolymers has been widely explored as an alternative to improve their delivery routes and specific targeting. This work presents a complete analysis of the association between chondroitin sulfate (CS) and cationic liposomes (CLs)/lipoplex (CL-pDNA). In this study, plasmid DNA (pDNA) was used as a genetic cargo for association with carriers. Firstly, we measured the stoichiometry of pseudo complexes and evaluated their colloidal properties, structural and morphological characteristics. Optimized CL-pDNA lipoplexes (positive z-potential) and CL-CS / CL-pDNA-CS (negative z-potential with CS mass ratio of 9% (w/w)) were further studied in detail. Small-angle X-ray scattering analysis and cryo-transmission electron microscopy micrographs revealed that the electrostatic interaction between CS and CL / CL-pDNA easily reorganized the lipid bilayers resulting in nanoscale uni/multilamellar vesicles. A high CS mass ratio (9% (w/w)) led to the reassembly of liposomal structure, wherein the pDNA was easily exchanged for CS chains, forming more than 50% of dense multilamellar vesicles. This data evidenced that the association between CS and CLs is not a conventional coating process since it generates complex and hybrid structures. We believe that these obtained colloidal data may be used in the future to investigate polymer-tailored nanocarriers and their production process. In brief, the colloidal study of hybrid structures may open interesting perspectives for developing novel carriers for drug and gene delivery applications.
Collapse
Affiliation(s)
- Bruna G Carvalho
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970 Campinas, Brazil
| | - Bianca B M Garcia
- Center for Cell Therapy and Molecular, Federal University of São Paulo (UNIFESP), 04044-010 São Paulo, Brazil
| | - Antonio A Malfatti-Gasperini
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil
| | - Sang W Han
- Center for Cell Therapy and Molecular, Federal University of São Paulo (UNIFESP), 04044-010 São Paulo, Brazil
| | - Lucimara G de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970 Campinas, Brazil.
| |
Collapse
|
8
|
Effective cytocompatible nanovectors based on serine-derived gemini surfactants and monoolein for small interfering RNA delivery. J Colloid Interface Sci 2021; 584:34-44. [PMID: 33039681 DOI: 10.1016/j.jcis.2020.09.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/19/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
Non-viral gene therapy based on gene silencing with small interfering RNA (siRNA) has attracted great interest over recent years. Among various types of cationic complexation agents, amino acid-based surfactants have been recently explored for nucleic acid delivery due to their low toxicity and high biocompatibility. Monoolein (MO), in turn, has been used as helper lipid in liposomal systems due to its ability to form inverted nonbilayer structures that enhance fusogenicity, thus contributing to higher transfection efficiency. In this work, we focused on the development of nanovectors for siRNA delivery based on three gemini amino acid-based surfactants derived from serine - (12Ser)2N12, amine derivative; (12Ser)2COO12, ester derivative; and (12Ser)2CON12, amide derivative - individually combined with MO as helper lipid. The inclusion of MO in the cationic surfactant system influences the morphology and size of the mixed aggregates. Furthermore, the gemini surfactant:MO systems showed the ability to efficiently complex siRNA, forming stable lipoplexes, in some cases clearly depending on the MO content, without inducing significant levels of cytotoxicity. High levels of gene silencing were achieved in comparison with a commercially available standard indicating that these gemini:MO systems are promising candidates as lipofection vectors for RNA interference (RNAi)-based therapies.
Collapse
|
9
|
Bulk and Microfluidic Synthesis of Stealth and Cationic Liposomes for Gene Delivery Applications. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2020; 2197:253-269. [PMID: 32827142 DOI: 10.1007/978-1-0716-0872-2_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This chapter describes the synthesis of stealth and cationic liposomes and their complexation with plasmid DNA to generate lipoplexes for gene delivery applications. Two techniques are presented: a top-down approach which requires a second step of processing for downsizing the liposomes (i.e., ethanol injection method) and a microfluidic technique that explores the diffusion of ethanol in water to allow the proper lipid self-assembly. The synthesis of stealth liposomes is also a challenge since the use of poly(ethylene glycol) favors the formation of oblate micelles. In this protocol, the stealth cationic liposome synthesis by exploring the high ionic strength to overcome the formation of secondary structures like micelles is described. Finally, the electrostatic complexation between cationic liposomes and DNA is described, indicating important aspects that guarantee the formation of uniform lipoplexes.
Collapse
|