1
|
Li X, Shen A, Xiao M, Li S, Yang W. New insights on health benefits, interactions with food components and potential application of marine-derived sulfated polysaccharides: A review. Int J Biol Macromol 2025; 294:139516. [PMID: 39761889 DOI: 10.1016/j.ijbiomac.2025.139516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/15/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Sulfated polysaccharides refer to polysaccharides containing sulfate groups on sugar units. In nature, sulfated polysaccharides are widely distributed in marine organisms, and the variation in sulfation sites, monosaccharide composition, and branched chain distribution among different species results in differences in the physicochemical properties and biological activities. From the latest perspective, this review summarized the types, structural characteristics, and potential health benefits of sulfated polysaccharides in marine foods. In recent years, marine-derived sulfated polysaccharides have been widely used as stabilizers and antimicrobial agents applied in nutraceutical delivery systems and food packaging, which depend on their interactions with food components. Hence, we outlined the non-covalent/covalent interactions of marine-derived sulfated polysaccharides with food components (e.g., proteins, polysaccharides, and polyphenols) as well as the application in food industry. Additionally, the prospects and potential development for sulfated polysaccharides are concluded, aiming to provide a deep understanding of marine-derived sulfated polysaccharides to promote the industrial application in food health.
Collapse
Affiliation(s)
- Xiquan Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Ao Shen
- Department of Food Science, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China
| | - Miaorong Xiao
- Department of Food Science, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China
| | - Shuzhen Li
- Department of Immunology, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China.
| | - Weiwei Yang
- Department of Food Science, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China.
| |
Collapse
|
2
|
Dinesan A, Krishnakumar S, Jayakumar R, Nair M. Biomimetic kartogenin containing κ-carrageenan hydrogel for nucleus pulposus regeneration. Int J Biol Macromol 2024; 276:133868. [PMID: 39009266 DOI: 10.1016/j.ijbiomac.2024.133868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Intervertebral disc degeneration is a clinical disease that reduces the quality of patient's life. The degeneration usually initiates in the nucleus pulposus (NP), hence the use of hydrogels represents a promising therapeutic approach. However, the viscoelastic nature of hydrogel and its ability to provide biomimetic architecture and biochemical cues influence the regeneration capability. This study focused on tuning the physical nature of a glycosaminoglycan hydrogel (κ-carrageenan) as well as the release kinetics of a chondrogenic factor (kartogenin - KGN) through physical cross-linking. For this, κ-carrageenan was cross linked with 2.5 % and 5 % potassium chloride (KCl) for 15 and 30 min and loaded with KGN molecule at 50 μM and 100 μM. The tight network structure with low water retention and degradation property was seen in hydrogel cross-linked with increased KCl concentration and time. However, optimal degradation along with NP mimicking viscoelastic nature was exhibited by 5 wt% KCl treated hydrogel (H3 hydrogel). All hydrogel groups exhibited burst KGN release at 24 h followed by a sustained release for 5 days. However, hydrogel cross-linked with 5 wt% KCl enhanced chondrogenic differentiation, mainly at lower KGN dose. In summary, this study shows the potential application of biomimetic KGN laden carrageenan hydrogel in NP regeneration.
Collapse
Affiliation(s)
- Abhirami Dinesan
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Sreelakshmi Krishnakumar
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - R Jayakumar
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| | - Manitha Nair
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| |
Collapse
|
3
|
Li S, Lin S, Jiang P, Bao Z, He X, Sun N. Contribution of κ-/ι-carrageenan on the gelling properties of shrimp myofibrillar protein and their interaction mechanism exploration. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:524-533. [PMID: 36054511 DOI: 10.1002/jsfa.12163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The contribution and mechanism of κ-/ι-carrageenan (CG) with different hydration characteristics on the gelling properties of shrimp myofibrillar protein (MP) gelation was studied. RESULTS The gel strength, water-holding capacity and viscoelastic properties of MP gels were significantly enhanced by 1.0% κ-/ι-CG (P < 0.05), but the microstructure showed that excessive carrageenan caused fragmentation of the gel network and a corresponding decrease in gel properties. Compared to MP-ιCG, MP-κCG showed larger breaking force and shorter breaking distance, thus enhancing the hardness and brittleness of the gel, which might be ascribed to a reinforced network skeleton and a tighter binding of κCG-myosin. However, MP-ιCG stabilized more moisture in the gel network, thereby improving the tenderness of the gel, which might be related to the electrostatic repulsion observed between the sulfate groups of ιCG and the myosin observed by molecular docking. In addition, the β-sheet content and intermolecular interactions might be positively correlated with gel properties. CONCLUSION In this study, a composite gel system was constructed based on the interaction of MP and CG. The quality differences of two kinds of CG-MP gels were clarified, which will provide guidance for the application of different kinds of carrageenan and the development of recombinant meat products with specific quality. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuang Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, PR China
| | - Pengfei Jiang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, PR China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, PR China
| | - Xueqing He
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, PR China
| |
Collapse
|
4
|
Microrheological properties and local structure of ι-carrageenan gels probed by using optical tweezers. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Kim SM, Wen Y, Kim HW, Park HJ. Textural and sensory qualities of low-calorie surimi with carrageenan inserted as a protein substitute using coaxial extrusion 3D food printing. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Moud AA. Fluorescence Recovery after Photobleaching in Colloidal Science: Introduction and Application. ACS Biomater Sci Eng 2022; 8:1028-1048. [PMID: 35201752 DOI: 10.1021/acsbiomaterials.1c01422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
FRAP (fluorescence recovery after photo bleaching) is a method for determining diffusion in material science. In industrial applications such as medications, foods, Medtech, hygiene, and textiles, the diffusion process has a substantial influence on the overall qualities of goods. All these complex and heterogeneous systems have diffusion-based processes at the local level. FRAP is a fluorescence-based approach for detecting diffusion; in this method, a high-intensity laser is made for a brief period and then applied to the samples, bleaching the fluorescent chemical inside the region, which is subsequently filled up by natural diffusion. This brief Review will focus on the existing research on employing FRAP to measure colloidal system heterogeneity and explore diffusion into complicated structures. This description of FRAP will be followed by a discussion of how FRAP is intended to be used in colloidal science. When constructing the current Review, the most recent publications were reviewed for this assessment. Because of the large number of FRAP articles in colloidal research, there is currently a dearth of knowledge regarding the growth of FRAP's significance to colloidal science. Colloids make up only 2% of FRAP papers, according to ISI Web of Knowledge.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
7
|
Structure-Elastic Properties Relationships in Gelling Carrageenans. Polymers (Basel) 2021; 13:polym13234120. [PMID: 34883623 PMCID: PMC8659267 DOI: 10.3390/polym13234120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Gelling carrageenans are polysaccharides extracted from the Gigartinales order of red algae. These are additives used essentially in the food industry for texturizing, stabilizing or gelling various formulations. Although a consensual gel mechanism has been reached which encompasses a coil-to-helix transition followed by the self-assembling of helices in a network, the structure–elastic relationships in the network are still to be clearly established. This paper reviews the reports in which carrageenan gel structures have been systematically compared with gel elastic properties. The focus is on the sizes documented for structural units, such as strands, aggregates, voids or network meshes, as well as on the reported linear and nonlinear elastic characteristics. The insufficient rationalization of carrageenan gel elasticity by models which take on board mechanically relevant structural features is underlined. After introducing selected linear and nonlinear elastic models, preliminary results comparing such models to structural and rheological data are presented. In particular, the concentration scaling of the strain hardening exhibited by two types of carrageenan gels is discussed.
Collapse
|
8
|
Dong Y, Wei Z, Xue C. Recent advances in carrageenan-based delivery systems for bioactive ingredients: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Bartlová M, Tremlová B, Marcinčák S, Pospiech M. Detection of Carrageenan in Meat Products Using Lectin Histochemistry. Foods 2021; 10:foods10040764. [PMID: 33916705 PMCID: PMC8065968 DOI: 10.3390/foods10040764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 01/03/2023] Open
Abstract
Carrageenan is a polysaccharide that is widely used in the food industry. Due to its water holding capacity, there is a higher risk of adulteration for economic reasons related to it. A verifiable method for detecting carrageenan is still missing in the food inspection sector. The detection of carrageenan in meat products is not well described. Our study describes lectin histochemistry as a novel approach for carrageenan detection. Within this study, the detection of carrageenan in meat products by lectin histochemistry is validated. Lectins of Arachis hypogaea (PNA) and Bandeiraea simlicifolia (BSA), specific for galactose units of carrageenan, were used. The samples included model meat products (ground chicken-meat products) and meat products from retail markets (chicken and pork hams, sausages, salami, and dried sausages). The limit of determination (LoD) of this method was set at 0.01 g kg-1. The method sensitivity for lectin PNA reached 1, and, for lectin BSA, it reached 0.96. Method specificity for lectin PNA was 1, and, for lectin BSA, it was 1.33. Cross-reactivity with other hydrocolloids tested was not confirmed. The results confirm that lectin histochemistry is suitable for detecting carrageenan in meat products.
Collapse
Affiliation(s)
- Marie Bartlová
- Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tr. 1946/1, 61242 Brno, Czech Republic; (M.B.); (B.T.)
| | - Bohuslava Tremlová
- Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tr. 1946/1, 61242 Brno, Czech Republic; (M.B.); (B.T.)
| | - Slavomír Marcinčák
- Department of Food Hygiene and Technology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia;
| | - Matej Pospiech
- Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tr. 1946/1, 61242 Brno, Czech Republic; (M.B.); (B.T.)
- Correspondence: ; Tel.: +420-541-562-704
| |
Collapse
|
10
|
Geonzon LC, Descallar FBA, Du L, Bacabac RG, Matsukawa S. Gelation mechanism and network structure in gels of carrageenans and their mixtures viewed at different length scales – A review. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Liu D, Zhou P, Nicolai T. Effect of kappa carrageenan on acid-induced gelation of whey protein aggregates. Part II: Microstructure. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
|
13
|
Kamińska-Dwórznicka A, Janczewska-Dupczyk A, Kot A, Łaba S, Samborska K. The impact of ι- and κ-carrageenan addition on freezing process and ice crystals structure of strawberry sorbet frozen by various methods. J Food Sci 2019; 85:50-56. [PMID: 31880331 DOI: 10.1111/1750-3841.14987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 11/30/2022]
Abstract
The aim of this work was to study the influence of ι- and κ-carrageenan addition to strawberry sorbet prepared by various freezing methods (cryostat and conventional freezer) on freezing kinetics and ice crystals structure. Four variants of strawberry-based sorbet were prepared: with no additive, with 0.1% addition of ι- and κ-carrageenan, and 1:1 blend of both. Freezing curves and freezing time, as well as the size and morphology of ice crystals, were analyzed. The addition of carrageenan stabilizers resulted in freezing process elongation. Reference samples were characterized by different dynamics of the freezing process. The addition of carrageenan increased the final temperature of the samples, compared to the reference sample (even 2.6 °C of difference). Additives reduced ice crystals growth. The most efficient was mixture of both fractions of carrageenan--the samples in this variant frozen in conventional freezer were characterized by the smallest ice crystals diameter--average 5.44 µm, while for the reference sample it was 17.79 µm. PRACTICAL APPLICATION: This research can give a new path for the carrageenan's hydrolysates application--not only for dairy products. Iota carrageenan fraction was recommended for dairy products according to its water-holding capacity in the presence of calcium ions. This study showed that mix of ι- and κ-carrageenan could bring positive results to such product as sorbet without any milk proteins addition. This experiment data could also be helpful when optimizing frozen desserts production in small gastronomy--especially the temperature and time of freezing modifications.
Collapse
Affiliation(s)
- Anna Kamińska-Dwórznicka
- Dept. of Food Engineering and Process Management, Faculty of Food Technology, Warsaw Univ. of Life Sciences (WULS-SGGW), Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Agnieszka Janczewska-Dupczyk
- Dept. of Food Engineering and Process Management, Faculty of Food Technology, Warsaw Univ. of Life Sciences (WULS-SGGW), Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Anna Kot
- Dept. of Food Engineering and Process Management, Faculty of Food Technology, Warsaw Univ. of Life Sciences (WULS-SGGW), Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Sylwia Łaba
- Inst. of Environmental Protection-Natl. Research Inst, Krucza 5/11d St., 00-548, Warsaw, Poland
| | - Katarzyna Samborska
- Dept. of Food Engineering and Process Management, Faculty of Food Technology, Warsaw Univ. of Life Sciences (WULS-SGGW), Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
14
|
Alam J, Alhoshan M, Shukla AK, Aldalbahi A, Ali FAA. k-Carrageenan – A versatile biopolymer for the preparation of a hydrophilic PVDF composite membrane. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Mixed iota and kappa carrageenan gels in the presence of both calcium and potassium ions. Carbohydr Polym 2019; 223:115107. [DOI: 10.1016/j.carbpol.2019.115107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 11/20/2022]
|