1
|
Ni Q, Zhu T, Wang W, Guo D, Li Y, Chen T, Zhang X. Green Synthesis of Narrow-Size Silver Nanoparticles Using Ginkgo biloba Leaves: Condition Optimization, Characterization, and Antibacterial and Cytotoxic Activities. Int J Mol Sci 2024; 25:1913. [PMID: 38339192 PMCID: PMC10856183 DOI: 10.3390/ijms25031913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Natural products derived from medicinal plants offer convenience and therapeutic potential and have inspired the development of antimicrobial agents. Thus, it is worth exploring the combination of nanotechnology and natural products. In this study, silver nanoparticles (AgNPs) were synthesized from the leaf extract of Ginkgo biloba (Gb), having abundant flavonoid compounds. The reaction conditions and the colloidal stability were assessed using ultraviolet-visible spectroscopy. X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to characterize the AgNPs. AgNPs exhibited a spherical morphology, uniform dispersion, and diameter ranging from ~8 to 9 nm. The FTIR data indicated that phytoconstituents, such as polyphenols, flavonoids, and terpenoids, could potentially serve as reducing and capping agents. The antibacterial activity of the synthesized AgNPs was assessed using broth dilution and agar well diffusion assays. The results demonstrate antibacterial effects against both Gram-positive and Gram-negative strains at low AgNP concentrations. The cytotoxicity of AgNPs was examined in vitro using the CCK-8 method, which showed that low concentrations of AgNPs are noncytotoxic to normal cells and promote cell growth. In conclusion, an environmentally friendly approach for synthesizing AgNPs from Gb leaves yielded antibacterial AgNPs with minimal toxicity, holding promise for future applications in the field of biomedicine.
Collapse
Affiliation(s)
- Qi Ni
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Ting Zhu
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Wenjie Wang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Dongdong Guo
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Yixiao Li
- School of Medicine, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| | - Tianyu Chen
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Xiaojun Zhang
- School of Medicine, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| |
Collapse
|
2
|
Lan Pham T, Dat Doan V, Le Dang Q, Anh Nguyen T, Huong Nguyen TL, Thuy Tran TD, Lan Nguyen TP, Anh Vo TK, Huy Nguyen T, Lam Tran D. Stable biogenic silver nanoparticles from Syzygium nervosum bud extract for enhanced catalytic, antibacterial and antifungal properties. RSC Adv 2023; 13:20994-21007. [PMID: 37448638 PMCID: PMC10336774 DOI: 10.1039/d3ra02754f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
In the present study, the biosynthesis of stable silver nanoparticles (BioAgNPs) was accomplished successfully for the first time by using an aqueous extract derived from the buds of Syzygium nervosum (SN) as both a reducing and a stabilizing agent. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM) investigations revealed that the biosynthesized BioAgNPs were predominantly spherical with an average size of 10-30 nm. It was found that the outstanding stability of the BioAgNPs colloidal solution was assigned to the additive effect of the surrounding protective organic layer and the highly negatively charged surface of the nanoparticles. Consequently, good antibacterial activity was demonstrated by the colloidal BioAgNPs solution against four distinct bacterial strains, including Gram-positive S. aureus and B. subtilis as well as Gram-negative E. coli and S. typhi. Interestingly, the biosynthesized BioAgNPs displayed greater antibacterial activity even when tested at low doses against Gram-negative S. typhi. In addition, the biogenic AgNPs demonstrated a significant level of catalytic activity in the process of converting 2-NP, 3-NP, and 4-NP into aminophenols within 15 min, with reaction rate constants of 9.0 × 10-4, 10 × 10-4, and 9.0 × 10-4 s-1, respectively. BioAgNPs formulations were assessed against anthracnose disease in tea plants and were found to be as effective as the positive control at a dose of 20-fold dilution, but less effective at a dose of 30-fold dilution. Both doses of BioAgNPs formulations significantly suppressed Colletotrichum camelliae (anthracnose disease) without affecting the growth of the tea plants.
Collapse
Affiliation(s)
- Thi Lan Pham
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Van Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 4, Go Vap District Ho Chi Minh City 70000 Vietnam
| | - Quang Le Dang
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tuan Anh Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Thi Lan Huong Nguyen
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 4, Go Vap District Ho Chi Minh City 70000 Vietnam
| | - Thi Dieu Thuy Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 4, Go Vap District Ho Chi Minh City 70000 Vietnam
| | - Thi Phuong Lan Nguyen
- University of Economics and Technology for Industries (UNETI) 456, Minh Khai, Vinh Tuy, Hai Ba Trung District Ha Noi Vietnam
| | - Thi Kieu Anh Vo
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Trung Huy Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Dai Lam Tran
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
3
|
Mahiuddin M, Ochiai B. Comprehensive Study on Lemon Juice-Based Green Synthesis and Catalytic Activity of Bismuth Nanoparticles. ACS OMEGA 2022; 7:35626-35634. [PMID: 36249355 PMCID: PMC9558247 DOI: 10.1021/acsomega.2c03416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/15/2022] [Indexed: 05/17/2023]
Abstract
Bismuth nanoparticles have gained considerable interest in catalysis because of their small size, large surface-to-volume ratio, and low toxicity. In spite of these advantages, the toxic reagents and solvents used in the synthetic process are significant limitations to their development and utilization. In this study, a green approach employing easily accessible lemon juice was applied for the synthesis of bismuth nanoparticles (BiNPs) as a green alternative to conventional chemical ones. This study clarified the formation and growing process of green-synthesized BiNPs using lemon juice as a reducing and capping agent. The reaction time and amounts of lemon juice significantly affect the growth, morphology, and stability of BiNPs, as confirmed from XRD, DLS, SEM, and TEM analyses. The synthesized BiNPs effectively catalyzed the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4, and the reduction was significantly accelerated by sunlight and the removal of the fibrous coating layer around BiNPs. Moreover, the synthesized BiNPs also show excellent catalytic efficacy toward the reduction of organic dyes, namely, methyl orange, methylene blue, and rhodamine B. All catalytic reductions followed the pseudo-first-order kinetics, and the rate constants are in the order of k MB > k RhB > k MO > k 4-NP. The stated biogenic synthetic route paves the way for the green industrial fabrication of BiNPs and their uses in catalysis for wastewater treatment.
Collapse
Affiliation(s)
- Md. Mahiuddin
- Chemistry
Discipline, Khulna University, Khulna 9208, Bangladesh
- Department
of Chemistry and Chemical Engineering, Graduate School of Science
and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Bungo Ochiai
- Department
of Chemistry and Chemical Engineering, Graduate School of Science
and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
4
|
Githala CK, Raj S, Dhaka A, Mali SC, Trivedi R. Phyto-fabrication of silver nanoparticles and their catalytic dye degradation and antifungal efficacy. Front Chem 2022; 10:994721. [PMID: 36226117 PMCID: PMC9548708 DOI: 10.3389/fchem.2022.994721] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) and their potent application against dye degradation and phytopathogens are attracting many scientists to nanotechnology. An attempt was made to synthesize silver nanoparticles using Plantago ovata leaf extract and test their effectiveness in removing organic dyes and antifungal activity. In the present study, stable AgNPs were synthesized from 0.1 mM AgNO3 and authenticated by observing the color change from yellow to red-brown, which was confirmed with wavelength UV-Vis spectrophotometer detection. The crystalline nature of the particles was characterized by x-ray diffraction (XRD) patterns. Furthermore, the AgNPs were characterized by high-resolution transmission electron microscope and scanning electron microscope investigations. Atomic force microscopy (AFM) and Raman spectra were also used to confirm the size and structure of the synthesized AgNPs. The elemental analysis and functional groups responsible for the reduction of AgNPs were analyzed by electron dispersive spectroscopy and fourier transform infra-red spectroscopy Fourier transforms infrared, respectively. A new biological approach was taken by breaking down organic dyes such as methylene blue and congo red. The AgNPs effectively inhibit the fungal growth of Alternaria alternata. This could be a significant achievement in the fight against many dynamic pathogens and reduce dye contamination from waste water.
Collapse
Affiliation(s)
| | - Shani Raj
- *Correspondence: Shani Raj, ; Rohini Trivedi,
| | | | | | | |
Collapse
|
5
|
Kis B, Moacă EA, Tudoran LB, Muntean D, Magyari-Pavel IZ, Minda DI, Lombrea A, Diaconeasa Z, Dehelean CA, Dinu Ș, Danciu C. Green Synthesis of Silver Nanoparticles Using Populi gemmae Extract: Preparation, Physicochemical Characterization, Antimicrobial Potential and In Vitro Antiproliferative Assessment. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5006. [PMID: 35888477 PMCID: PMC9318049 DOI: 10.3390/ma15145006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Green route is an economic, facile and eco-friendly method, employed for the synthesis of various types of nanoparticles, having it as a starting point biological entity, especially as a plant extract. The present study aims to obtain silver nanoparticles (AgNPs) starting from an ethanolic extract of Populi gemmae (Pg), by adjusting the reaction parameters. The morphological and structural characterization exhibited that both the reaction temperature and the concentration of metal salt, contributes to the obtaining of Pg-AgNPs with adjustable size and shape. The newly synthesized nanoparticles exhibited a good antibacterial activity on Gram-positive bacteria as well as antifungal activity. The in vitro antiproliferative activity of Pg-AgNPs was assessed on two different cancer cell lines (breast cancer cells-MCF7 and lung carcinoma epithelial cells-A549). Results have shown that the green-synthetized Pg-AgNPs_S2 (obtained at 60 °C, using AgNO3 of 5 M) induced a substantial decrease in tumor cell viability in a dose-dependent manner with an IC50 ranging from 5.03 to 5.07 µg/mL on A549 cell line and 3.24 to 4.93 µg/mL on MCF7 cell line.
Collapse
Affiliation(s)
- Brigitta Kis
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
| | - Elena-Alina Moacă
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lucian Barbu Tudoran
- Electron Microscopy Laboratory “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for R & D of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Delia Muntean
- Department of Microbiology Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Daliana Ionela Minda
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Adelina Lombrea
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania;
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ștefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy, 9 Revolutiei Bulevard, 300041 Timișoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy, 9 Revolutiei Bulevard, 300041 Timișoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| |
Collapse
|
6
|
Devi TA, Sivaraman RM, Sheeba Thavamani S, Peter Amaladhas T, AlSalhi MS, Devanesan S, Kannan MM. Green synthesis of plasmonic nanoparticles using Sargassum ilicifolium and application in photocatalytic degradation of cationic dyes. ENVIRONMENTAL RESEARCH 2022; 208:112642. [PMID: 34998807 DOI: 10.1016/j.envres.2021.112642] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
In the present work, a green synthetic method for the preparation of extremely stable silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using Sargassum ilicifolium has been demonstrated. Thus produced nanoparticles were characterized by UV-Visible (UV-Vis) spectroscopy, Fourier Transform InfraRed spectroscopy (FT-IR), Energy Dispersive X-ray spectroscopy (EDX), X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and Zeta potential analyses. The average size of Ag and Au NPs was 27.9 and 9.36 nm respectively from TEM, which was further substantiated by XRD data. Zeta potential values of -42.2 mV and -28.3 mV for Ag and Au NPs respectively suggested that the nanoparticles were negatively charged and highly stable. AgNPs showed desirable bactericidal activity towards Enterobacter species, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Proteus species. The photocatalytic behaviour of AgNPs was studied to degrade malachite green (MG) and methylene blue (MB) in aqueous medium. In MG, 82.9% degradation was achieved in 180 min of light exposure and the pseudo first order rate constant was 7.2 × 10-3 min-1. In MB, almost 100% of the dye was degraded in the same period and the pseudo first order rate constant calculated was 7.5 × 10-3 min-1. The bio-derived AgNPs are hence promising materials for treating effluent from dyeing industries and water purification.
Collapse
Affiliation(s)
- Thangavel Akkini Devi
- Department of Chemistry, A.P.C. Mahalaxmi College for Women, Tuticorin, 628002, Tamil Nadu, India
| | | | - Seth Sheeba Thavamani
- Post Graduate and Research Department of Chemistry, V.O. Chidambaram College, Tuticorin, 628008, Tamil Nadu, India
| | - Thomas Peter Amaladhas
- Post Graduate and Research Department of Chemistry, V.O. Chidambaram College, Tuticorin, 628008, Tamil Nadu, India.
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Maruthamuthu Murali Kannan
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Jayakrishnan R, Joseph A, Thomas V. Efficacy in degradation of carcinogenic pollutant sulforhodamine B by green synthesized silver nanoparticles. MICRO AND NANO SYSTEMS LETTERS 2021. [DOI: 10.1186/s40486-021-00138-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractColloidal Silver nano-particles were grown at room temperature using leaf extract of Ocimum tenuiflorum. The silver nanoparticles suspended in the solution were found to be stable for over a period of 2 months. Structural, optical and photo catalytic behavior of the suspended silver (Ag) nano-particles (NPs) was characterized. From TEM analysis the size of the silver nanoparticles was estimated to be 25–30 nm. Our findings suggest that the ratio between the molarity of AgNO3 and the volume of leaf extract does not have any role in controlling the size of the Ag nano-particles. These green synthesized Ag nano-particles exhibit degradation of the carcinogenic organic pollutant sulforhodamine B in absence of light.
Collapse
|
8
|
Microwave-assisted fabrication of ZnO/MK10 nanocomposite: an efficient photocatalytic and sonophotocatalytic degradation of methylene blue dye. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01741-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Abstract
In an effort to produce non-toxic and economically viable “green” protocols for waste water treatment, researchers are actively involved to develop versatile and effective silver nanoparticles (SNPs) as nano-catalyst from bio-based techniques. Since, p-nitrophenol (PNP) is one of the anthropogenic contaminants, considerable attention has been focused in catalytic degradability of PNP in wastewater treatment by curtailing serious effect on aquatic fauna. Ingestion of contaminants by aquatic organisms will not only affect the aquatic species but is also a potential threat to human health, especially if the toxic contaminants are involved in food chain. In this short report, we provided a comprehensive insight on few remarkable nanocatalysts especially based on SNPs and its biopolymer composites synthesized via ecofriendly “green” route. The beneficiality and catalytic performance of these silver nanocatalysts are concisely documented on standard model degradation reduction of PNP to p-aminophenol (PAP) in the presence of aqueous sodium borohydride. The catalytic degradation of PNP to PAP using SNPs follows pseudo first order kinetics involving six-electrons with lower activation energy. Furthermore, we provided a list of highly effective, recoverable, and economically viable SNPs, which demonstrated its potential as nanocatalysts by focusing its technical impact in the area of water remediation.
Collapse
|
10
|
Doan VD, Phung MT, Nguyen TLH, Mai TC, Nguyen TD. Noble metallic nanoparticles from waste Nypa fruticans fruit husk: Biosynthesis, characterization, antibacterial activity and recyclable catalysis. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
11
|
Moradi F, Sedaghat S, Moradi O, Arab Salmanabadi S. Review on green nano-biosynthesis of silver nanoparticles and their biological activities: with an emphasis on medicinal plants. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1769662] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fatemeh Moradi
- Department of Chemistry, College of Science, Shahr-e-Qods Branch, Islamic Azad University, Shahr-e-Qods, Iran
| | - Sajjad Sedaghat
- Department of Chemistry, College of Science, Shahr-e-Qods Branch, Islamic Azad University, Shahr-e-Qods, Iran
| | - Omid Moradi
- Department of Chemistry, College of Science, Shahr-e-Qods Branch, Islamic Azad University, Shahr-e-Qods, Iran
| | - Samira Arab Salmanabadi
- Department of Chemistry, College of Science, Shahr-e-Qods Branch, Islamic Azad University, Shahr-e-Qods, Iran
| |
Collapse
|
12
|
Mavaei M, Chahardoli A, Shokoohinia Y, Khoshroo A, Fattahi A. One-step Synthesized Silver Nanoparticles Using Isoimperatorin: Evaluation of Photocatalytic, and Electrochemical Activities. Sci Rep 2020; 10:1762. [PMID: 32020015 PMCID: PMC7000682 DOI: 10.1038/s41598-020-58697-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023] Open
Abstract
In the current study, isoimperatorin, a natural furanocoumarin, is used as a reducing reagent to synthesize isoimperatorin mediated silver nanoparticles (Iso-AgNPs), and photocatalytic and electrocatalytic activities of Iso-AgNPs are evaluated. Iso-AgNPs consisted of spherically shaped particles with a size range of 79-200 nm and showed catalytic activity for the degradation (in high yields) of New Fuchsine (NF), Methylene Blue (MB), Erythrosine B (ER) and 4-chlorophenol (4-CP) under sunlight irradiation. Based on obtained results, Iso-AgNPs exhibited 96.5%, 96.0%, 92%, and 95% degradation rates for MB, NF, ER, and 4-CP, respectively. The electrochemical performance showed that the as-prepared Iso-AgNPs exhibited excellent electrocatalytic activity toward hydrogen peroxide (H2O2) reduction. It is worth noticing that the Iso-AgNPs were used as electrode materials without any binder. The sensor-based on binder-free Iso-AgNPs showed linearity from 0.1 µM to 4 mM with a detection limit of 0.036 μM for H2O2. This binder-free and straightforward strategy for electrode preparation by silver nanoparticles may provide an alternative technique for the development of other nanomaterials based on isoimperatorin under green conditions. Altogether, the application of isoimpratorin in the synthesis of nano-metallic electro and photocatalysts, especially silver nanoparticles, is a simple, cost-effective and efficient approach.
Collapse
Affiliation(s)
- Maryamosadat Mavaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Chahardoli
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yalda Shokoohinia
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ, USA
| | - Alireza Khoshroo
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Fattahi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
13
|
Ghiorghita CA, Dragan ES, Bucatariu F, Schwarz D, Blegescu C, Mihai M. Green synthesis of Ag nanoparticles with uncommon behaviour towards NaBH4 in presence of Congo red using polyelectrolyte multilayers containing sodium carboxymethyl cellulose. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Baruah D, Yadav RNS, Yadav A, Das AM. Alpinia nigra fruits mediated synthesis of silver nanoparticles and their antimicrobial and photocatalytic activities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 201:111649. [PMID: 31710925 DOI: 10.1016/j.jphotobiol.2019.111649] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 02/05/2023]
Abstract
In the present systematic study, silver nanoparticles have been synthesized using the fruits of Alpinia nigra. Apart from the presence of saponins, glycosides, alkaloids, steroids, the extract of A. nigra fruits are rich in polyphenols. The Total Flavonoid and Phenol Content of A. nigra fruits extract is 718 mgRE/g extract and 74.9 mgGAE/g extract respectively. The formation of the nanoparticles was validated through characterization techniques like UV-Vis spectroscopy, X- ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Energy dispersive X-ray spectroscopy (EDX). The spherical shape of silver nanoparticles is observed in Transmission Electron Microscopy (TEM) images. The average particle size of the silver nanoparticles is 6 nm. The biomolecules of the fruit extract played the dual role of reducing and capping agents which is evident from Fourier Transform Infrared (FTIR) spectrometer and Scanning Electron Microscopy (SEM) image analysis. The A. nigra capped silver nanoparticles exhibited promising antimicrobial activity against gram negative bacteria Klebsiella pneumoniae, gram positive bacteria Staphylococcus aureus and the pathogenic fungus, Candida albicans. Amongst the three pathogens, Klebsiella pneumoniae is the most susceptible to silver nanoparticles. Furthermore, the nanoparticles efficiently catalysed the degradation of the anthropogenic dyes Methyl orange, Rhodamine B and Orange G in the presence of sunlight. The photocatalytic degradation process follows the pseudo-first order kinetics. These results confirm that the silver nanoparticles can be efficiently synthesized via a green route using A. nigra fruits with applications as antimicrobial and catalytic agents.
Collapse
Affiliation(s)
- Debjani Baruah
- Natural Products Chemistry Group, Chemical Science and Technology Division, CSIR- North East Institute of Science and Technology, Jorhat, Assam 785006, India; Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam 786004, India
| | | | - Archana Yadav
- Biotechnology Group, Biological Science and Technology Division, CSIR- North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Archana Moni Das
- Natural Products Chemistry Group, Chemical Science and Technology Division, CSIR- North East Institute of Science and Technology, Jorhat, Assam 785006, India.
| |
Collapse
|
15
|
Plant-based metal and metal alloy nanoparticle synthesis: a comprehensive mechanistic approach. JOURNAL OF MATERIALS SCIENCE 2019. [DOI: 10.1007/s10853-019-04121-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Phyto-Nanocatalysts: Green Synthesis, Characterization, and Applications. Molecules 2019; 24:molecules24193418. [PMID: 31547052 PMCID: PMC6804184 DOI: 10.3390/molecules24193418] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 01/14/2023] Open
Abstract
Catalysis represents the cornerstone of chemistry, since catalytic processes are ubiquitous in almost all chemical processes developed for obtaining consumer goods. Nanocatalysis represents nowadays an innovative approach to obtain better properties for the catalysts: stable activity, good selectivity, easy to recover, and the possibility to be reused. Over the last few years, for the obtaining of new catalysts, classical methods—based on potential hazardous reagents—have been replaced with new methods emerged by replacing those reagents with plant extracts obtained in different conditions. Due to being diversified in morphology and chemical composition, these materials have different properties and applications, representing a promising area of research. In this context, the present review focuses on the metallic nanocatalysts’ importance, different methods of synthesis with emphasis to the natural compounds used as support, characterization techniques, parameters involved in tailoring the composition, size and shape of nanoparticles and applications in catalysis. This review presents some examples of green nanocatalysts, grouped considering their nature (mono- and bi-metallic nanoparticles, metallic oxides, sulfides, chlorides, and other complex catalysts).
Collapse
|