1
|
Zhou S, Liu X, Cui Y, Chen S, Zhong F, Lu J, Kong C. Molecular investigation of soybean protein for improving the stability of quinoa (Chenopodium quinoa willd.) milk substitute. Food Chem 2024; 461:140829. [PMID: 39146685 DOI: 10.1016/j.foodchem.2024.140829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Soybean could greatly improve stability of quinoa milk substitute. However, the key compound and underlying mechanisms remained unclear. Here we showed that soybean protein was the key component for improving quinoa milk substitute stability but not oil or okara. Supplementary level of soybean protein at 0%, 2%, 4%, and 8% of quinoa (w/w) was optimized. Median level at 4% could effectively enhance physical stability, reduce particle size, narrow down particle size distribution, and decrease apparent viscosity of quinoa milk substitute. Microscopic observation further confirmed that soybean protein could prevent phase separation. Besides, soybean protein showed increased surface hydrophobicity. Molecular docking simulated that soybean protein but not quinoa protein, could provide over 10 anchoring points for the most abundant quinoa vanillic acid, through hydrogen bond and Van-der-Waals. These results contribute to improve stability of quinoa based milk substitute, and provide theoretical basis for the interaction of quinoa phenolics and soybean protein.
Collapse
Affiliation(s)
- Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xinghao Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yajun Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Siyi Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Fang Zhong
- Science Center for Future Food, Jiangnan University, Wuxi 214122, China
| | - Jing Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chunli Kong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
2
|
Sampaio SL, Chisnall T, Euston SR, Liddle C, Lonchamp J. Novel palm shortening substitute using a combination of rapeseed oil, linseed meal and beta-glucan. Food Chem 2024; 457:140134. [PMID: 38901335 DOI: 10.1016/j.foodchem.2024.140134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
This study investigated the potential of a novel sustainable ingredient composed of rapeseed oil, linseed meal and beta-glucan (PALM-ALT) to mimic palm shortening functionality in cake. The combined functional properties of linseed meal and beta-glucan led to stable semi-solid emulsion-gels (20-31 μm oil droplet size, 105-115 Pa.s viscosity and 60-65 Pa yield stress). PALM-ALT contained 25 and 88% less total and saturated fat than palm shortening, whilst PALM-ALT cakes contained 26 and 75% less total and saturated fat than the palm-based control. PALM-ALT cakes matched the flavour profile of the palm-based control, while rapeseed oil cakes tasted more sour and less sweet than the control (p < 0.05). PALM-ALT cakes proved less hard and more cohesive than the control (p < 0.05), with 100% of the consumer panel preferring PALM-ALT formulations. This study demonstrated the unique potential of PALM-ALT as healthier, sustainable and competitive alternative to palm shortening.
Collapse
Affiliation(s)
- Shirley L Sampaio
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Timothy Chisnall
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Stephen R Euston
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Catriona Liddle
- School of Health Sciences, Queen Margaret University, Queen Margaret University Drive, Edinburgh EH21 6UU, United Kingdom
| | - Julien Lonchamp
- School of Health Sciences, Queen Margaret University, Queen Margaret University Drive, Edinburgh EH21 6UU, United Kingdom.
| |
Collapse
|
3
|
Olalere OA, Guler F, Chuck CJ, Leese HS, Castro-Dominguez B. Mechanochemical extraction of edible proteins from moor grass. RSC MECHANOCHEMISTRY 2024; 1:375-385. [PMID: 39263416 PMCID: PMC11388976 DOI: 10.1039/d4mr00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/11/2024] [Indexed: 09/13/2024]
Abstract
Extracting edible nutrient-rich food fractions from unconventional sources, such as grass, could play a pivotal role in ensuring food security, bolstering economic prosperity, combating climate change, and enhancing overall quality of life. Current extraction techniques rely heavily on harsh chemicals, which not only degrade nutrients but can also substantially add to the cost of the process and make downstream separation challenging. In this study, we harnessed a mechanochemical process, liquid-assisted grinding (LAG) with and without Na2CO3, termed sodium carbonate assisted grinding (SAG), to extract the protein fraction from moor grass. These techniques were compared to the conventional alkaline extraction (AE) method. Unlike alkaline extraction, which solubilized over 70% of the material, the mechanochemical approach using Na2CO3 solubilized only 55% of the grass while still extracting the vast majority of the protein in the original grass feedstock. The protein fractions obtained from the SAG process had a similar amino acid profile to the core feedstock but also contained distinct characteristics over the other methods of extraction. FT-IR analysis, for example, identified the presence of an amide III band in the protein fractions obtained from the SAG process, indicating unique structural features that contribute to improved dispersibility, gelation properties, and water-in-water stability. Furthermore, the extracted moor grass protein contained a higher proportion of glutamic acid in comparison to other amino acids in the protein, which indicates a savoury umami (meaty) characteristic to the protein fraction. The protein extracted via SAG also exhibited good heat stability (139-214 °C), rendering them potentially suitable for baking applications. Additionally, coupling Na2CO3 with liquid assisted grinding not only removed the need for organic solvents and conventional heating but also reduced solvent consumption by 83%, compared with the typical alkaline extraction, thus simplifying the downstream processes necessary to produce food fractions. This study demonstrates the potential significance of mechanochemical extraction processes in unlocking nutrients from unconventional resources like grass, to produce the next generation of sustainable food ingredients.
Collapse
Affiliation(s)
| | - Fatma Guler
- Department of Chemical Engineering, University of Bath Claverton Down BA2 7AY Bath UK
| | - Christopher J Chuck
- Department of Chemical Engineering, University of Bath Claverton Down BA2 7AY Bath UK
- Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath Bath BA2 7AY UK
| | - Hannah S Leese
- Department of Chemical Engineering, University of Bath Claverton Down BA2 7AY Bath UK
- Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath Bath BA2 7AY UK
| | - Bernardo Castro-Dominguez
- Department of Chemical Engineering, University of Bath Claverton Down BA2 7AY Bath UK
- Centre for Digital Manufacturing and Design (dMaDe), University of Bath Bath BA2 7AY UK
| |
Collapse
|
4
|
Lapčíková B, Lapčík L, Valenta T, Chvatíková M. Plant-Based Emulsions as Dairy Cream Alternatives: Comparison of Viscoelastic Properties and Colloidal Stability of Various Model Products. Foods 2024; 13:1225. [PMID: 38672897 PMCID: PMC11049096 DOI: 10.3390/foods13081225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In the context of growing interest in plant-based food products for their potential health benefits and sustainability, this study investigates the effect of mono- and diglycerides of fatty acids application on physico-chemical properties of various plant-based cream products, compared to lecithin application in rice cream. Rheological and textural parameters, colour profile, and colloidal stability were analysed. The application of mono- and diglycerides modified the creams' viscoelastic behaviour, showing a decrease in viscoelasticity across the samples; although in oat-coconut cream resulted in a higher viscoelasticity, indicating the formation of a gel-like structure. Rice cream with lecithin emulsifier showed lower viscoelastic properties characterised by higher phase angle (tan δ). All samples behaved as pseudoplastic materials (with a flow behaviour index n < 1). For coconut and almond creams, the consistency coefficient increased and flow behaviour index decreased after emulsifier application. Interestingly, the emulsifier addition did not significantly affect the cream's colour profile, characterised by yellow hue angle (h*) as a dominant spectral component. The colloidal stability, indicated by a stability index (SI), was determined as well.
Collapse
Affiliation(s)
- Barbora Lapčíková
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic;
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, CZ-760 01 Zlín, Czech Republic; (T.V.); (M.C.)
| | - Lubomír Lapčík
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic;
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, CZ-760 01 Zlín, Czech Republic; (T.V.); (M.C.)
| | - Tomáš Valenta
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, CZ-760 01 Zlín, Czech Republic; (T.V.); (M.C.)
| | - Marie Chvatíková
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, CZ-760 01 Zlín, Czech Republic; (T.V.); (M.C.)
| |
Collapse
|
5
|
Krümmel A, Pagno CH, Malheiros PDS. Active Films of Cassava Starch Incorporated with Carvacrol Nanocapsules. Foods 2024; 13:1141. [PMID: 38672814 PMCID: PMC11049105 DOI: 10.3390/foods13081141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The synthesis of active films with natural antimicrobials from renewable sources offers an alternative to conventional non-biodegradable packaging and synthetic additives. This study aimed to develop cassava starch films with antimicrobial activity by incorporating either free carvacrol or chia mucilage nanocapsules loaded with carvacrol (CMNC) and assess their impact on the physical, mechanical, and barrier properties of the films, as well as their efficacy against foodborne pathogens. The addition of free carvacrol led to a reduction in mechanical properties due to its hydrophobic nature and limited interaction with the polymeric matrix. Conversely, CMNC enhanced elongation at break and reduced light transmission, with a more uniform distribution in the polymeric matrix. Films containing 8% carvacrol exhibited inhibitory effects against Salmonella and Listeria monocytogenes, further potentiated when encapsulated in chia mucilage nanocapsules. These findings suggest that such films hold promise as active packaging materials to inhibit bacterial growth, ensuring food safety and extending shelf life.
Collapse
Affiliation(s)
- Aline Krümmel
- Laboratory of Microbiology and Food Hygiene, Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil;
| | - Carlos Henrique Pagno
- Laboratory of Phenolic Compounds, Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil;
| | - Patrícia da Silva Malheiros
- Laboratory of Microbiology and Food Hygiene, Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil;
| |
Collapse
|
6
|
Hou Y, Ding J, Guo Q, Zhang N. Nutritional Value and Structure Characterization of Protein Components of Corylus mandshurica Maxim. Molecules 2023; 28:6355. [PMID: 37687184 PMCID: PMC10489673 DOI: 10.3390/molecules28176355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Alternative protein sources for the human diet may help overcome the growing food pressure. Plants with abundant resources and high protein content are potential sources. In this article, graded proteins and isolated proteins from Corylus mandshurica Maxim kernels were extracted by the Osborne procedure and the alkali-solution and acid-isolation method, respectively, and the contents of the five proteins, and the differences in nutritional value and structural properties of the main proteins, were investigated. Amino acid analysis revealed that the total essential amino acids in the five proteins ranged from 249.58 to 324.52 mg/g. The essential amino acid profiles in the proteins were similar to those of FAO/WHO except for the alcohol-soluble protein. The essential amino acid indices ranged from 58.59 to 72.19 and the biological values ranged from 52.16 to 66.99, and the highest nutritional indices were found for the isolate and water-soluble protein, which were 41.68 and 55.78, respectively. The molecular weight pattern distribution of the protein isolates of the Corylus mandshurica Maxim kernel was more similar to that of the water-soluble proteins by SDS-PAGE. The β-sheet and α-helix were the main secondary structures in the two protein fractions. The fluorescence spectra showed that the maximum fluorescence intensity of the two proteins and their λmax were also somewhat different. From the perspective of microscopic morphology, the two proteins are mainly compact and irregular lamellar structures, but the surface of the water-soluble protein is more flat and regular. Both proteins have good solubility, and the water-soluble protein has higher solubility. In general, the protein isolates of the Corylus mandshurica Maxim kernel and the water-soluble protein showed their potential as plant protein resources.
Collapse
Affiliation(s)
- Yanli Hou
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (Y.H.); (J.D.)
| | - Jie Ding
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (Y.H.); (J.D.)
| | - Qingqi Guo
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (Y.H.); (J.D.)
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
7
|
Yang Y, Gupta VK, Du Y, Aghbashlo M, Show PL, Pan J, Tabatabaei M, Rajaei A. Potential application of polysaccharide mucilages as a substitute for emulsifiers: A review. Int J Biol Macromol 2023; 242:124800. [PMID: 37178880 DOI: 10.1016/j.ijbiomac.2023.124800] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/08/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Mucilages are natural compounds consisting mainly of polysaccharides with complex chemical structures. Mucilages also contain uronic acids, proteins, lipids, and bioactive compounds. Because of their unique properties, mucilages are used in various industries, including food, cosmetics, and pharmaceuticals. Typically, commercial gums are composed only of polysaccharides, which increase their hydrophilicity and surface tension, reducing their emulsifying ability. As a result of the presence of proteins in combination with polysaccharides, mucilages possess unique emulsifying properties due to their ability to reduce surface tension. In recent years, various studies have been conducted on using mucilages as emulsifiers in classical and Pickering emulsions because of their unique emulsifying feature. Studies have shown that some mucilages, such as yellow mustard, mutamba, and flaxseed mucilages, have a higher emulsifying capacity than commercial gums. A synergistic effect has also been shown in some mucilages, such as Dioscorea opposita mucilage when combined with commercial gums. This review article investigates whether mucilages can be used as emulsifiers and what factors affect their emulsifying properties. A discussion of the challenges and prospects of using mucilages as emulsifiers is also presented in this review.
Collapse
Affiliation(s)
- Yadong Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Yating Du
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
8
|
Zare S, Mirlohi A, Sabzalian MR, Saeidi G, Koçak MZ, Hano C. Water Stress and Seed Color Interacting to Impact Seed and Oil Yield, Protein, Mucilage, and Secoisolariciresinol Diglucoside Content in Cultivated Flax ( Linum usitatissimum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1632. [PMID: 37111857 PMCID: PMC10141971 DOI: 10.3390/plants12081632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Flaxseed (Linum usitatissimum L.) is a plant with a wide range of medicinal, health, nutritional, and industrial uses. This study assessed the genetic potential of yellow and brown seeds in thirty F4 families under different water conditions concerning seed yield, oil, protein, fiber, mucilage, and lignans content. Water stress negatively affected seed and oil yield, while it positively affected mucilage, protein, lignans, and fiber content. The total mean comparison showed that under normal moisture conditions, seed yield (209.87 g/m2) and most quality traits, including oil (30.97%), secoisolariciresinol diglucoside (13.89 mg/g), amino acids such as arginine (1.17%) and histidine (1.95%), and mucilage (9.57 g/100 g) were higher in yellow-seeded genotypes than the brown ones ((188.78 g/m2), (30.10%), (11.66 mg/g), (0.62%), (1.87%), and (9.35 g/100 g), respectively). Under water stress conditions, brown-seeded genotypes had a higher amount of fiber (16.74%), seed yield (140.04 g/m2), protein (239.02 mg. g-1), methionine (5.04%), and secondary metabolites such as secoisolariciresinol diglucoside (17.09 mg/g), while their amounts in families with yellow seeds were 14.79%, 117.33 g/m2, 217.12 mg. g-1, 4.34%, and 13.98 mg/g, respectively. Based on the intended food goals, different seed color genotypes may be appropriate for cultivation under different moisture environments.
Collapse
Affiliation(s)
- Sara Zare
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Aghafakhr Mirlohi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Mohammad R. Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Ghodratollah Saeidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Mehmet Zeki Koçak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, 76000 Igdir, Turkey
| | - Christophe Hano
- Department of Chemical Biology, Eure & Loir Campus, University of Orleans, 28000 Chartres, France
| |
Collapse
|
9
|
Dhiman A, Thakur K, Parmar V, Sharma S, Sharma R, Kaur G, Singh B, Suhag R. New insights into tailoring physicochemical and techno-functional properties of plant proteins using conventional and emerging technologies. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Carvacrol encapsulation into nanoparticles produced from chia and flaxseed mucilage: Characterization, stability and antimicrobial activity against Salmonella and Listeria monocytogenes. Food Microbiol 2022; 108:104116. [DOI: 10.1016/j.fm.2022.104116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022]
|
11
|
Kumar M, Hasan M, Choyal P, Tomar M, Gupta OP, Sasi M, Changan S, Lorenzo JM, Singh S, Sampathrajan V, Dhumal S, Pandiselvam R, Sharma K, Satankar V, Waghmare R, Senapathy M, Sayed AA, Radha, Dey A, Amarowicz R, Kennedy JF. Cottonseed feedstock as a source of plant-based protein and bioactive peptides: Evidence based on biofunctionalities and industrial applications. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Peng D, Ye J, Jin W, Yang J, Geng F, Deng Q. A review on the utilization of flaxseed protein as interfacial stabilizers for food applications. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dengfeng Peng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute Chinese Academy of Agricultural Sciences Wuhan Hubei People's Republic of China
- Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory Hubei Key Laboratory of Lipid Chemistry and Nutrition Wuhan Hubei People's Republic of China
| | - Jieting Ye
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute Chinese Academy of Agricultural Sciences Wuhan Hubei People's Republic of China
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan Hubei People's Republic of China
| | - Weiping Jin
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan Hubei People's Republic of China
| | - Jing Yang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute Chinese Academy of Agricultural Sciences Wuhan Hubei People's Republic of China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering Chengdu University Chengdu Sichuan China
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute Chinese Academy of Agricultural Sciences Wuhan Hubei People's Republic of China
- Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory Hubei Key Laboratory of Lipid Chemistry and Nutrition Wuhan Hubei People's Republic of China
| |
Collapse
|
13
|
Fabrication of edible solid lipid nanoparticle from beeswax/propolis wax by spontaneous emulsification: Optimization, characterization and stability. Food Chem 2022; 387:132934. [PMID: 35421652 DOI: 10.1016/j.foodchem.2022.132934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
In the current study, the production and characterization of novel solid lipid nanoparticles (SLNs) using safe/low-cost natural beeswax (BW) and propolis wax (PW) and by the simple and inexpensive assay of spontaneous emulsification were studied. To fabricate SLNs, the optimum levels of surfactant/oil ratio (SOR), stirring speed, and time were obtained based on minimum particle size (PS) and polydispersity index (PDI). Therefore, the optimal conditions to produce PW and BW nanoparticles were SOR of 1.26 and 2 under stirring speed of 1050 rpm for 20 min, leading to PS of 21.9 and 23.2 nm, respectively. The contact angle of 73.7° and 62.9° for BW and PW SLNs respectively, showed suitable hydrophilicity to stabilize oil-in-water (O/W) Pickering emulsions. Temperatures over 70 °C led to a drastic increment of PS in both types of SLNs. Upon nanoparticles drying, the utilization of cryoprotectants could cause less aggregation and better reconstitution.
Collapse
|
14
|
Oh S, Kim DY. Characterization, Antioxidant Activities, and Functional Properties of Mucilage Extracted from Corchorus olitorius L. Polymers (Basel) 2022; 14:polym14122488. [PMID: 35746064 PMCID: PMC9228403 DOI: 10.3390/polym14122488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 02/07/2023] Open
Abstract
This study extracted the mucilage from Corchorus olitorius L. to observe its chemical and functional properties and suggest its possible applications in various fields. Corchorus olitorius L. mucilage was isolated by hot water extraction. FT-IR and HPAEC-PAD were used to describe the chemical composition, and the functional properties and antioxidant activities of the mucilage were also examined. The mucilage was mainly composed of uronic acid (34.24%, w/w). The solubility was 79.48 ± 1.08% at 65 °C, the swelling index was 29.01 ± 2.54% at 25 °C, and the water-holding capacity and oil-binding capacity were 28.66 ± 1.48 and 8.423 ± 0.23 g/g, respectively. The mucilage viscosity increased from 4.38 to 154.97 cP in a concentration-dependent manner. Increasing the concentration decreased the emulsion activity and increased the emulsion stability, most likely because of the corresponding increase in surface tension and viscosity. Results from antioxidant assays confirmed that the in-vitro radical scavenging activity of the mucilage increased with concentration. This study shows that C. olitorius L. can be utilized as a new hydrocolloid source, with potential applications in fields ranging from foods to cosmetics and pharmaceuticals.
Collapse
|
15
|
Puligundla P, Lim S. A Review of Extraction Techniques and Food Applications of Flaxseed Mucilage. Foods 2022; 11:1677. [PMID: 35741874 PMCID: PMC9223220 DOI: 10.3390/foods11121677] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022] Open
Abstract
Flaxseed contains significant concentration of mucilage or gum (a type of hydrocolloid). Flaxseed mucilage (FM) predominantly occurs in the outermost layer of the seed's hull and is known to possess numerous health benefits such as delayed gastric emptying, reduced serum cholesterol, and improved glycemic control. FM is typically composed of an arabinoxylan (neutral in nature) and a pectic-like material (acidic in nature). Similar to gum arabic, FM exhibits good water-binding capacity and rheological properties (similar functionality); therefore, FM can be used as its replacement in foods. In this review, an overview of methods used for FM extraction and factors influencing the extraction yield were discussed initially. Thereafter, food applications of FM as gelling agent/gel-strengthening agent, structure-forming agent, stabilizing agent, fat replacer, anti-retrogradation agent, prebiotic, encapsulating agent, edible coatings and films/food packaging material, and emulsifier/emulsion stabilizer were included. At the end, some limitations to its wide application and potential solutions were added.
Collapse
Affiliation(s)
| | - Seokwon Lim
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea;
| |
Collapse
|
16
|
Li KY, Zhang XR, Huang GQ, Teng J, Guo LP, Li XD, Xiao JX. Complexation between ovalbumin and gum Arabic in high total biopolymer concentrations and the emulsifying ability of the complexes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Rostamabadi MM, Falsafi SR, Nishinari K, Rostamabadi H. Seed gum-based delivery systems and their application in encapsulation of bioactive molecules. Crit Rev Food Sci Nutr 2022; 63:9937-9960. [PMID: 35587167 DOI: 10.1080/10408398.2022.2076065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Now-a-days, the food/pharma realm faces with great challenges for the application of bioactive molecules when applying them in free form due to their instability in vitro/in vivo. For promoting the biological and functional properties of bioactive molecules, efficient delivery systems have played a pivotal role offering a controlled delivery and improved bioavailability/solubility of bioactives. Among different carbohydrate-based delivery systems, seed gum-based vehicles (SGVs) have shown great promise, facilitating the delivery of a high concentration of bioactive at the site of action, a controlled payload release, and less bioactive loss. SGVs are potent structures to promote the bioavailability, beneficial properties, and in vitro/in vivo stability of bioactive components. Here, we offer a comprehensive overview of seed gum-based nano- and microdevices as delivery systems for bioactive molecules. We have a focus on structural/functional attributes and health-promoting benefits of seed gums, but also strategies involving modification of these biopolymers are included. Diverse SGVs (nano/microparticles, functional films, hydrogels/nanogels, particles for Pickering nanoemulsions, multilayer carriers, emulsions, and complexes/conjugates) are reviewed and important parameters for bioactive delivery are highlighted (e.g. bioactive-loading capacity, control of bioactive release, (bio)stability, and so on). Future challenges for these biopolymer-based carriers have also been discussed. HighlightsSeed gum-based polymers are promising materials to design different bioactive delivery systems.Seed gum-based delivery systems are particles, fibers, complexes, conjugates, hydrogels, etc.Seed gum-based vehicles are potent structures to promote the bioavailability, beneficial properties, and in vitro/in vivo stability of bioactive components.
Collapse
Affiliation(s)
- Mohammad Mahdi Rostamabadi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
- Food Hydrocolloid International Science and Technology, Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan, China
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Effect of microwave exposure to flaxseed on the composition, structure and techno-functionality of gum polysaccharides. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Shen Y, Hong S, Li Y. Pea protein composition, functionality, modification, and food applications: A review. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 101:71-127. [PMID: 35940709 DOI: 10.1016/bs.afnr.2022.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The demand for proteins continues to increase due to their nutritional benefits, the growing world population, and rising protein deficiency. Plant-based proteins represent a sustainable source to supplement costly animal proteins. Pea (Pisum sativum L.) is one of the most produced plant legume crops in the world and contributes to 26% of the total pulse production. The average protein content of pea is about 20%-25%. The commercial utilization of pea proteins is limited, partially due to its less desirable functionalities and beany off-flavor. Protein modification may change these properties and broaden the application of pea proteins in the food industry. Functional properties such as protein solubility, water and oil holding capacity, emulsifying/foaming capacity and stability, and gelation can be altered and improved by enzymatic, chemical, and physical modifications. These modifications work by affecting protein chemical structures, hydrophobicity/hydrophilicity balance, and interactions with other food constituents. Modifiers, reaction conditions, and degree of modifications are critical variables for protein modifications and can be controlled to achieve desirable functional attributes that may meet applications in meat analogs, baking products, dressings, beverages, dairy mimics, encapsulation, and emulsions. Understanding pea protein characteristics will allow us to design better functional ingredients for food applications.
Collapse
Affiliation(s)
- Yanting Shen
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Shan Hong
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States.
| |
Collapse
|
20
|
Nie C, Qin X, Duan Z, Huang S, Yu X, Deng Q, Xiang Q, Geng F. Comparative structural and techno-functional elucidation of full-fat and defatted flaxseed extracts: implication of atmospheric pressure plasma jet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:823-835. [PMID: 34232506 DOI: 10.1002/jsfa.11418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The relatively inferior techno-functionality of flaxseed protein/polysaccharide complexes, especially regarding emulsifying and antioxidant activities, has partially limited their implication in the health food system. The present study aimed to investigate the effects of an atmospheric pressure plasma jet (APPJ) on the physicochemical, structural and selected techno-functional properties of flaxseed extracts. RESULTS The results obtained showed that the full-fat and defatted flaxseed extract solutions (5 mg mL-1 ) displayed a sustainable decline in pH (-54.06%, -48.80%, P < 0.05) and zeta potential values (-29.42%, -44.28%, P < 0.05), but a gradual increase in particle sizes, as visualised by an optical microscope, during 0-120 s of APPJ treatment. Moreover, the APPJ led to initial decrease but subsequent increase in protein carbonyls and secondary lipid oxidation products, and concurrently changed the spatial conformation and microstructure of flaxseed extracts, as indicated by endogenous fluorescence properties and scanning electron microscopy (SEM). Additionally, the protein subunit remodeling and gum polysaccharides depolymerization were different for full-fat and defatted flaxseed extracts after 30 s of APPJ exposure. Importantly, the emulsifying and antioxidant activities of defatted flaxseed extract were particularly improved, as assessed by cyro-SEM and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity following 15-30 s of APPJ treatment, as a result of the changing interactions between protein and gum polysaccharides, as well as the release of specific phenolic compounds. CONCLUSION APPJ could serve as a promising strategy for tailoring the specific techno-functionality of flaxseed extracts based on mild structural modification. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengzhen Nie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, and Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou, China
| | - Xiaopeng Qin
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, and Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou, China
| | - Ziqiang Duan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, and Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou, China
| | - Shasha Huang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, and Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou, China
| | - Xiao Yu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, and Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou, China
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan, China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, and Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
21
|
YE XP, XU MF, TANG ZX, CHEN HJ, WU DT, WANG ZY, SONGZHEN YX, HAO J, WU LM, SHI LE. Flaxseed protein: extraction, functionalities and applications. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.22021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Juan HAO
- Hangzhou Normal University, China
| | | | - Lu-E SHI
- Hangzhou Normal University, China
| |
Collapse
|
22
|
Ghavidel N, Fatehi P. Recent Developments in the Formulation and Use of Polymers and Particles of Plant-based Origin for Emulsion Stabilizations. CHEMSUSCHEM 2021; 14:4850-4877. [PMID: 34424605 DOI: 10.1002/cssc.202101359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The main scope of this Review was the recent progress in the use of plant-based polymers and particles for the stabilization of Pickering and non-Pickering emulsion systems. Due to their availability and promising performance, it was discussed how the source, modification, and formulation of cellulose, starch, protein, and lignin-based polymers and particles would impact their emulsion stabilization. Special attention was given toward the material synthesis in two forms of polymeric surfactants and particles and the corresponding formulated emulsions. Also, the effects of particle size, degree of aggregation, wettability, degree of substitution, and electrical charge in stabilizing oil/water systems and micro- and macro-structures of oil droplets were discussed. The wide range of applications using such plant-based stabilizers in different technologies as well as their challenge and future perspectives were described.
Collapse
Affiliation(s)
- Nasim Ghavidel
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| | - Pedram Fatehi
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| |
Collapse
|
23
|
Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106789] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Tulain UR, Mahmood A, Aslam S, Erum A, Shamshad Malik N, Rashid A, Kausar R, Alqahtani MS. Formulation and Evaluation of Linum usitatissimum Mucilage-Based Nanoparticles for Effective Delivery of Ezetimibe. Int J Nanomedicine 2021; 16:4579-4596. [PMID: 34267514 PMCID: PMC8275157 DOI: 10.2147/ijn.s308790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction The aim of current study was to prepare Linum usitatissimum mucilage (LUM) based nanoparticles, capable of encapsulating hydrophobic drug ezetimibe as nanocarriers. Methods Solvent evaporation and nanoprecipitation techniques were used to develop nanoparticles by encapsulating ezetimibe in the articulated matrix of polysaccharide fractions. Developed nanoparticles were characterized to determine the particle size, zeta potential, polydispersibility index (PDI), and entrapment efficiency (EE). Morphology and physicochemical characterization were carried out through SEM, FTIR, PXRD and thermal analysis. Saturation solubility and in vitro release studies were also performed. Safety assessment of ezetimibe loaded nanoparticles was evaluated via oral acute toxicity study. Results The mean particle size, zeta potential, PDI and EE for emulsion solvent evaporation were 683.6 nm, -28.3 mV, 0.39, 63.7% and for nanoprecipitation were 637.7 nm, 0.07, -27.1 mV and 80%, respectively. Thermal analysis confirmed enhanced thermal stability, whereas PXRD confirmed amorphous nature of drug. Saturation solubility (p-value <0.05) demonstrated improved solubility of drug when enclosed in linseed nanoparticles. Nanoprecipitation surpasses emulsion solvent evaporation in dissolution test by possessing smaller size. Acute oral toxicity study indicated no significant changes in behavioral, clinical or histopathological parameters of control and experimental groups. Conclusion The in vitro release of ezetimibe was augmented by enhancing aqueous solubility through devised nanoparticles. Thus, linseed mucilage could act as biopolymer in the fabrication of nanoparticle formulation. The acute oral toxicological investigations provided evidence that LUMNs were safe after oral administration.
Collapse
Affiliation(s)
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi, United Arab Emirates
| | - Sidra Aslam
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Alia Erum
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science & Technology, Islamabad, Pakistan
| | - Ayesha Rashid
- Department of Pharmacy, The Women University Multan, Multan, Pakistan
| | - Rizwana Kausar
- ILM College of Pharmaceutical Sciences, Sargodha, Pakistan
| | - Mohammed S Alqahtani
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Sharkawy A, Barreiro MF, Rodrigues AE. New Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles: Synthesis, characterization and tracking of the nanoparticles after skin application. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126327] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Cortes Morales EA, Sedaghat Doost A, Velazquez G, Van der Meeren P. Comparison of low- and high-methoxyl pectin for the stabilization of whey protein isolate as carrier for lutein. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Effect of pH on okara protein-carboxymethyl cellulose interactions in aqueous solution and at oil-water interface. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Ma N, Gao Q, Li X, Xu D, Yuan Y, Cao Y. Enhancing the physicochemical stability and digestibility of DHA emulsions by encapsulation of DHA droplets in caseinate/alginate honeycomb-shaped microparticles. Food Funct 2020; 11:2080-2093. [PMID: 32129355 DOI: 10.1039/c9fo02947h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Docosahexaenoic acid (DHA) was encapsulated in caseinate/alginate microparticles by adjusting the pH based on the electrostatic complexation, in order to improve the physicochemical stability and digestibility of single caseinate-stabilized DHA emulsions. In this study, relatively stable honeycomb-shaped DHA microparticles were formed by electrostatic complexation between positively charged caseinate-coated DHA droplets, caseinate and negatively charged alginate at pH 4.5. The zeta-potential, particle size, size distribution, physical stability, microstructure, DHA oxidation and free fatty acids (FFA) release rate in a simulated gastrointestinal tract (GIT) model were determined. Dynamic light scattering (DLS) and confocal laser scanning microscopy (CLSM) measurements indicated that DHA microparticles had a particle size (1521.00 ± 39.15 nm) significantly larger than that of caseinate-stabilized DHA emulsions (243.23 ± 4.51 nm). The microparticles were much more stable near the isoelectric point (pI) of the adsorbed proteins compared with the single emulsions according to the original transmissions of LUMiSizer. The cryo-scanning electron microscopy (Cryo-SEM) images also showed that the microparticles formed a specific honeycomb-shaped network structure with more uniform distribution and without aggregation. The incorporation of DHA droplets into caseinate/alginate microparticles significantly ameliorated their chemical stability. GIT studies showed that the digestion of DHA microparticles was enhanced which was due to more open loose structures compared with the large-scale close-knit aggregation of DHA emulsion droplets. This study may provide useful information for the stabilization of functional food components and rational design of nutraceutical delivery systems.
Collapse
Affiliation(s)
- Ningning Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| | - Qianru Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| | - Xiaoyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| | - Yingmao Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| |
Collapse
|
29
|
Pickering and high internal phase Pickering emulsions stabilized by protein-based particles: A review of synthesis, application and prospective. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106117] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
|
31
|
Sridharan S, Meinders MBJ, Bitter JH, Nikiforidis CV. On the Emulsifying Properties of Self-Assembled Pea Protein Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12221-12229. [PMID: 32988196 PMCID: PMC7586397 DOI: 10.1021/acs.langmuir.0c01955] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/28/2020] [Indexed: 05/31/2023]
Abstract
Pea proteins are promising oil-in-water emulsifying agents at both neutral and acidic conditions. In an acidic environment, pea proteins associate to form submicrometer-sized particles. Previous studies suggested that the emulsions at acidic pH were stabilized due to a Pickering mechanism. However, protein particles can be in equilibrium with protein molecules, which could play a significant role in the stabilization of emulsion droplets. Therefore, we revisited the emulsion stabilization mechanism of pea proteins at pH 3 and investigated whether the protein particles or the protein molecules are the major emulsifying agent. The theoretical and experimental surface load of dispersed oil droplets were compared, and we found that protein particles can cover only 3.2% of the total oil droplet surface, which is not enough to stabilize the droplets, whereas protein molecules can cover 47% of the total oil droplet surface. Moreover, through removing protein particles from the mixture and emulsifying with only protein molecules, the contributions of pea protein molecules to the emulsifying properties of pea proteins at pH 3 were evaluated. The results proved that the protein molecules were the primary stabilizers of the oil droplets at pH 3.
Collapse
Affiliation(s)
- Simha Sridharan
- Biobased
Chemistry and Technology (BCT), Wageningen
University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
- TiFN, Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
| | - Marcel B. J. Meinders
- Wageningen
Food and Biobased Research (FBR), Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Johannes H. Bitter
- Biobased
Chemistry and Technology (BCT), Wageningen
University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Constantinos V. Nikiforidis
- Biobased
Chemistry and Technology (BCT), Wageningen
University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| |
Collapse
|
32
|
Drozłowska E, Bartkowiak A, Łopusiewicz Ł. Characterization of Flaxseed Oil Bimodal Emulsions Prepared with Flaxseed Oil Cake Extract Applied as a Natural Emulsifying Agent. Polymers (Basel) 2020; 12:E2207. [PMID: 32993070 PMCID: PMC7600428 DOI: 10.3390/polym12102207] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, a majority of oilseeds plants are converted into byproducts and waste materials during processing. Press cakes are rich in valuable biopolymers, such as proteins and polysaccharides (fiber, lignans, etc.). In this study flaxseed oil cake extract (FOCE) was used to stabilize flaxseed oil-in-water emulsions. The effect of FOCE with various flaxseed oil concentrations (10-50% v/v) on several physicochemical properties of emulsions, such as stability, rheology, color and particle size was investigated. The rheological parameters suggested that all samples were non-Newtonian fluids, whereas particle size measurements and calculation SPAN index provided information about the broadness of emulsions particle size distribution. FOCE was able to efficiently stabilize oil/water interfaces with a high oil content. Results obtained for FOCE were compared with effects for synthetic emulsifier (Tween 80) and separated FOCE compounds (flaxseed gum and flaxseed protein). FOCE emulsifying activity is a result of different water-holding and oil-binding capacities of flaxseed gum and protein. This result is an intriguing conclusion regarding the necessity for using pure emulsifiers, showing the possibility of using a bio-based extract containing biopolymers, which is part of the principles of circular economy and the idea of zero-waste. The results give the opportunity to use FOCE as an ingredient in efficient flaxseed oil emulsions stabilizer for food applications.
Collapse
Affiliation(s)
- Emilia Drozłowska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (A.B.); (Ł.Ł.)
| | | | | |
Collapse
|
33
|
|
34
|
|
35
|
Nikbakht Nasrabadi M, Sedaghat Doost A, Goli SAH, Van der Meeren P. Effect of thymol and Pickering stabilization on in-vitro digestion fate and oxidation stability of plant-derived flaxseed oil emulsions. Food Chem 2020; 311:125872. [PMID: 31767488 DOI: 10.1016/j.foodchem.2019.125872] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate the effect of Pickering stabilization by biopolymer-based particles (bioparticles), consisting of flaxseed protein and polysaccharides, and of the addition of thymol to the oil phase on the oxidation stability, and digestion fate of flaxseed oil (FO) emulsions, compared to bulk FO and conventional emulsions stabilized by polysorbate 80 (PS80). Applying Pickering stabilization and thymol simultaneously was a successful approach to retard FO oxidation. Moreover, lipid digestion was slower in bioparticle-stabilized emulsions compared to PS80 stabilized emulsions. The thymol bioaccessibility increased after incorporation into FO Pickering emulsions in comparison to the bulk oil. The results suggested that the combination of Pickering stabilization and thymol addition to the oil phase can be used as a promising way of protecting highly unsaturated oils such as FO against oxidation. These emulsions are also applicable for designing functional foods with controlled lipid digestion.
Collapse
Affiliation(s)
- Maryam Nikbakht Nasrabadi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Ali Sedaghat Doost
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Sayed Amir Hossein Goli
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| |
Collapse
|
36
|
Jafari SM, Sedaghat Doost A, Nikbakht Nasrabadi M, Boostani S, Van der Meeren P. Phytoparticles for the stabilization of Pickering emulsions in the formulation of novel food colloidal dispersions. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Zhu CP, Zhang HH, Huang GQ, Xiao JX. Whey protein isolate—low methoxyl pectin coacervates as a high internal phase Pickering emulsion stabilizer. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1724801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cui-Ping Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hui-Hui Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Guo-Qing Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jun-Xia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
38
|
Sedaghat Doost A, Nikbakht Nasrabadi M, Goli SAH, van Troys M, Dubruel P, De Neve N, Van der Meeren P. Maillard conjugation of whey protein isolate with water-soluble fraction of almond gum or flaxseed mucilage by dry heat treatment. Food Res Int 2020; 128:108779. [DOI: 10.1016/j.foodres.2019.108779] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 11/15/2022]
|
39
|
Nikbakht Nasrabadi M, Goli SAH, Sedaghat Doost A, Dewettinck K, Van der Meeren P. Bioparticles of flaxseed protein and mucilage enhance the physical and oxidative stability of flaxseed oil emulsions as a potential natural alternative for synthetic surfactants. Colloids Surf B Biointerfaces 2019; 184:110489. [DOI: 10.1016/j.colsurfb.2019.110489] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/27/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
|
40
|
Albert C, Beladjine M, Tsapis N, Fattal E, Agnely F, Huang N. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. J Control Release 2019; 309:302-332. [DOI: 10.1016/j.jconrel.2019.07.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/18/2022]
|