1
|
Li M, Prévot V, You Z, Forano C. Highly selective and efficient Pb 2+ capture using PO 4-loaded 3D-NiFe layer double hydroxides derived from MIL-88A. CHEMOSPHERE 2024; 364:143070. [PMID: 39142393 DOI: 10.1016/j.chemosphere.2024.143070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Lead (Pb) contamination in water requires improved decontamination technologies. The addition of phosphate to precipitate Pb2+ is a widely used method for remediating Pb in soil and water, though it has certain limitations. This study focuses on novel 3D mesoporous layered double hydroxide (LDH) sorbents functionalized with phosphate anions for Pb2+ removal from contaminated waters. Our innovative strategy involves converting a sacrificial template metal-organic frameworks (MOFs) structure (MIL-88A(Fe)) into NixFe LDH, followed by an anion exchange reaction with phosphate anions. This process preserves the 3D microrod architecture of MIL-88A and prevents deleterious LDH particle aggregation. The synthesis results in stable microrod crystals, 1-2 μm long, composed of 3D assemblies of NixFe-PO4 LDH nanoplatelets with a specific surface area exceeding 110 m2/g. The novel LDH materials display fast adsorption kinetics (pseudo-second order model) and remarkably high Pb2+ removal performances (Langmuir isotherm model) with a capacity of 538 mg/g, surpassing other reported adsorbents. LDH-PO4 exhibits high selectivity for Pb2+ over competing ions like Ni2+ and Cd2+ (selectivity order is: Pb2+ > Ni2+ > Cd2+). Removal of Pb2+ from NixFeLDH/88A-PO4 involves various mechanisms, including surface complexation and surface precipitation of lead phosphate or lead hydroxide phases as revealed by structural characterization techniques.
Collapse
Affiliation(s)
- Mengwei Li
- School of Resource and Environmental Sciences, Wuhan University, China; Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont- Ferrand, F-63000, Clermont-Ferrand, France
| | - Vanessa Prévot
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont- Ferrand, F-63000, Clermont-Ferrand, France
| | - Zhixiong You
- School of Resource and Environmental Sciences, Wuhan University, China.
| | - Claude Forano
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont- Ferrand, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
2
|
Zhu Z, Liu S, Zhu Y, He H, Zhang J, Mo X, Tang S, Fan Y, Zhang L, Zhou X. Study on the performance and mechanism of cobaltous ion removal from water by a high-efficiency strontium-doped hydroxyapatite adsorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30059-30071. [PMID: 38594560 DOI: 10.1007/s11356-024-33239-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
In this study, a high-efficiency strontium-doped hydroxyapatite (Sr-HAP) adsorbent was synthesized by a sol-gel method for removing cobaltous ions (Co(II)) from water. The effects of adsorbent dose, initial solution pH, initial Co(II) concentration and temperature on the removal performance of Co(II) were investigated. Experimental results indicated that the optimum Sr-HAP dose was 0.30 g/50 mL solution, the Sr-HAP adsorbent could effectively remove Co(II) in a wide pH range of 3-8. Increasing temperature was conducive to the adsorption, and the maximum Co(II) adsorption capacity by Sr-HAP reached 48.467 mg/g at 45 °C. The adsorption of Co(II) followed the pseudo-second-order kinetic model, indicating that the Co(II) adsorption by Sr-HAP was attributed mainly to chemisorption. The isothermal adsorption results showed that at lower Co(II) equilibrium concentration, the Langmuir model fitted the data better than the Freundlich model but opposite at higher Co(II) equilibrium concentration. Therefore, the adsorption of Co(II) was a process from monolayer adsorption to multilayer adsorption with the increase of the Co(II) equilibrium concentration. The diffusion analysis of Co(II) to Sr-HAP indicated that the internal diffusion and surface adsorption were the rate-controlled steps of Co(II) adsorption. Thermodynamic study demonstrated that the Co(II) adsorption process was spontaneous and endothermic. The mechanism study revealed that in addition to chemisorption, Sr-HAP also removed Co(II) ions from water via ion exchange and surface complexation.
Collapse
Affiliation(s)
- Zongqiang Zhu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Nanning, 530022, China
| | - Shuangshuang Liu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Yinian Zhu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Hao He
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Jun Zhang
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Xiaoxin Mo
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Shen Tang
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Yinming Fan
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Lihao Zhang
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Xiaobin Zhou
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.
| |
Collapse
|
3
|
Wang T, Cao W, Dong K, Li H, Wang D, Xu Y. Hydroxyapatite and its composite in heavy metal decontamination: Adsorption mechanisms, challenges, and future perspective. CHEMOSPHERE 2024; 352:141367. [PMID: 38331264 DOI: 10.1016/j.chemosphere.2024.141367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Nanohydroxyapatite (n-HAP), recognized by its peculiar crystal architecture and distinctive attributes showcased the underlying potential in adsorbing heavy metal ions (HMI). In this paper, the intrinsic mechanism of HMI adsorption by n-HAP was first revealed. Subsequently, the selectivity and competitiveness of n-HAP for HMI in a variety of environments containing various interferences from cations, anions, and organic molecules are elucidated. Next, n-HAP was further categorized according to its morphological dimensions, and its adsorption properties and intrinsic mechanisms were investigated based on these different morphologies. It was shown that although n-HAP has excellent adsorption capacity and cost-effectiveness, its application is often challenging to realize due to its inherent fragility and agglomeration, the technical problems required for its handling, and the difficulty of recycling. Finally, to address these issues, this paper discusses the tendency of n-HAP and its hybridized/modified materials to adsorb HMI as well as the limitations of their applications. By summarizing the limitations and future directions of hybridization/modification HAP in the field of HMI contamination abatement, this paper provides insightful perspectives for its gradual improvement and rational application.
Collapse
Affiliation(s)
- Ting Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Weiyuan Cao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Kun Dong
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Dunqiu Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Yufeng Xu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China.
| |
Collapse
|
4
|
Umair M, Huma Zafar S, Cheema M, Usman M. New insights into the environmental application of hybrid nanoparticles in metal contaminated agroecosystem: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119553. [PMID: 37976639 DOI: 10.1016/j.jenvman.2023.119553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Heavy metals (HMs) contamination in agricultural soils is a major constraint to provide safe food to society. Cultivation of food crops on these soils, channels the HMs into the food chain and causes serious human health and socioeconomic problems. Multiple conventional and non-conventional remedial options are already in practice with variable success rates, but nanotechnology has proved its success due to higher efficiency. It also led the hypothesis to use hybrid nanoparticles (HNPs) with extended benefits to remediate the HMs and supplement nutrients to enhance the crop yield in the contaminated environments. Hybrid nanoparticles are defined as exclusive chemical conjugates of inorganic and/or organic nanomaterials that are combinations of two or more organic components, two or more inorganic components, or at least one of both types of components. HNPs of different elements like essential nutrients, beneficial nutrients and carbon-based nanoparticles are used for the remediation of metals contaminated soil and the production of metal free crops. Characterizing features of HNPs including particle size, surface area, reactivity, and solubility affect the efficacy of these HNPs in the contaminated environment. Hybrid nanoparticles have great potential to remove the HMs ions from soil solution and restrict their ingress into the root tissues. Furthermore, HNPs of essential nutrients not only compete with heavy metal uptake by plants but also fulfill the need of nutrients. This review provides a comprehensive overview of the challenges associated with application of HNPs in contaminated soils, environmental implications, their remediation ability, and factors affecting their dynamics in environmental matrices.
Collapse
Affiliation(s)
- Muhammad Umair
- Agricultural Research Station, Bahawalpur, 63100, Punjab, Pakistan; Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan.
| | - Sehrish Huma Zafar
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan.
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, A2H 5G4, Newfoundland, Canada.
| | - Muhammad Usman
- College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
5
|
Chen W, Xie H, Jiang N, Guo X, Liu Z. Synthesis of magnetic sodium lignosulfonate hydrogel(Fe 3O 4@LS) and its adsorption behavior for Cd 2+ in wastewater. Int J Biol Macromol 2023; 245:125498. [PMID: 37356695 DOI: 10.1016/j.ijbiomac.2023.125498] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Heavy metal pollution is becoming increasingly serious. Heavy metal pollutants are nonbiodegradable and can be bioenriched through the food chain, and thus, they greatly threaten the environment and human health. Hydrogels, as an ideal adsorbent, have been widely used to treat heavy metal industrial wastewater. Sodium lignosulfonate hydrogel (LS) was prepared by free-radical grafting copolymerization, and nano-Fe3O4 particles were loaded in LS by an in-situ precipitation method (Fe3O4@LS). The magnetic properties and adsorption capacity of Fe3O4@LS are closely related to the load capacity of Fe3O4. XRD, FTIR, XPS, SEM, TEM, BET, and TGA analyses of the materials were performed. Subsequently, the removal effect of the typical pollutant Cd2+ in heavy metal-polluted water was studied with Fe3O4@LS as the adsorbent. The influences of the Fe3O4@LS dosage and initial pH were investigated, and the adsorption kinetics and thermodynamics were further explored and discussed. Finally, the adsorption mechanism of Fe3O4@LS on Cd2+ was obtained. Results show that Fe3O4@LS has a more stable spatial network structure than LS, and the pore size, specific surface area and active sites increase. The maximum adsorption capacity can reach 88.00 mg/g when pH = 6 and the dosage of Fe3O4@LS is 1000 mg/L. The adsorption of Cd2+ by Fe3O4@LS conforms to pseudosecond-order kinetics and the Temkin isothermal adsorption model. Further mechanistic investigations show that the sorption of Cd2+ on Fe3O4@LS is mainly attributed to surface complexation, electrostatic attraction and coprecipitation. The coexistence of cations in water will inhibit the adsorption of Fe3O4@LS. Fe3O4@LS has superparamagnetism and a good response to an external magnetic field. The adsorption rate can still reach >60 % after four elutions with NaCl as the eluent. This material can be reused and has good application potential.
Collapse
Affiliation(s)
- Wu Chen
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; HSE Key Laboratory of Petro China Company Limited (Yangtze University), Jingzhou 434023, People's Republic of China
| | - Huijia Xie
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; HSE Key Laboratory of Petro China Company Limited (Yangtze University), Jingzhou 434023, People's Republic of China.
| | - Nan Jiang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; HSE Key Laboratory of Petro China Company Limited (Yangtze University), Jingzhou 434023, People's Republic of China
| | - Xianzhe Guo
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; HSE Key Laboratory of Petro China Company Limited (Yangtze University), Jingzhou 434023, People's Republic of China
| | - Zhuozhuang Liu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; HSE Key Laboratory of Petro China Company Limited (Yangtze University), Jingzhou 434023, People's Republic of China
| |
Collapse
|
6
|
Vasquez-Caballero MA, Canchanya-Huaman Y, Mayta-Armas AF, Pomalaya-Velasco J, Checca-Huaman NR, Bendezú-Roca Y, Ramos-Guivar JA. Pb(II) Uptake from Polluted Irrigation Water Using Anatase TiO 2 Nanoadsorbent. Molecules 2023; 28:4596. [PMID: 37375151 DOI: 10.3390/molecules28124596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The adsorption characteristics of titanium dioxide nanoparticles (nano-TiO2) for the removal of Pb(II) from irrigation water were investigated in this work. To accomplish this, several adsorption factors, such as contact time and pH, were tested to assess adsorption efficiencies and mechanisms. Before and after the adsorption experiments, commercial nano-TiO2 was studied using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), energy dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The outcomes showed that anatase nano-TiO2 was remarkably efficient in cleaning Pb(II) from water, with a removal efficiency of more than 99% after only one hour of contact time at a pH of 6.5. Adsorption isotherms and kinetic adsorption data matched the Langmuir and Sips models quite well, showing that the adsorption process occurred at homogenous sites on the surface of nano-TiO2 by forming a Pb(II) adsorbate monolayer. The XRD and TEM analysis of nano-TiO2 following the adsorption procedure revealed a non-affected single phase (anatase) with crystallite sizes of 9.9 nm and particle sizes of 22.46 nm, respectively. According to the XPS data and analyzed adsorption data, Pb ions accumulated on the surface of nano-TiO2 through a three-step mechanism involving ion exchange and hydrogen bonding mechanisms. Overall, the findings indicate that nano-TiO2 has the potential to be used as an effective and long-lasting mesoporous adsorbent in the treatment and cleaning of Pb(II) from water bodies.
Collapse
Affiliation(s)
- Miguel A Vasquez-Caballero
- Laboratorio de No Metálicos, Facultad de Ingeniería Química, Universidad Nacional del Centro del Perú (UNCP), Av. Mariscal Ramón Castilla Nº 3909, El Tambo, Huancayo 12000, Peru
| | - Yamerson Canchanya-Huaman
- Laboratorio de No Metálicos, Facultad de Ingeniería Química, Universidad Nacional del Centro del Perú (UNCP), Av. Mariscal Ramón Castilla Nº 3909, El Tambo, Huancayo 12000, Peru
| | - Angie F Mayta-Armas
- Laboratorio de No Metálicos, Facultad de Ingeniería Química, Universidad Nacional del Centro del Perú (UNCP), Av. Mariscal Ramón Castilla Nº 3909, El Tambo, Huancayo 12000, Peru
| | - Jemina Pomalaya-Velasco
- Laboratorio de No Metálicos, Facultad de Ingeniería Química, Universidad Nacional del Centro del Perú (UNCP), Av. Mariscal Ramón Castilla Nº 3909, El Tambo, Huancayo 12000, Peru
| | | | - Yéssica Bendezú-Roca
- Laboratorio de No Metálicos, Facultad de Ingeniería Química, Universidad Nacional del Centro del Perú (UNCP), Av. Mariscal Ramón Castilla Nº 3909, El Tambo, Huancayo 12000, Peru
| | - Juan A Ramos-Guivar
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru
| |
Collapse
|
7
|
Jurgelane I, Locs J. Activated Carbon and Clay Pellets Coated with Hydroxyapatite for Heavy Metal Removal: Characterization, Adsorption, and Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093605. [PMID: 37176485 PMCID: PMC10179747 DOI: 10.3390/ma16093605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
In the present work, activated-carbon-containing pellets were preparedby direct chemical activation of sawdust, using clays as a binder. The obtained pellets (ACC) were coated with hydroxyapatite (HAp) nanoparticles (ACC-HAp) to improve adsorption towards Pb(II), Cu(II), Zn(II), and Ni(II). The pellets were characterized by scanning electron microscopy (SEM), by Fourier transform infrared spectroscopy (FTIR), and with a gas sorptometer. The effect of pH, contact time, and initial concentration on adsorption performance was investigated. Additionally, desorption studies were performed, and the regeneration influence on compressive strength and repeated Pb(II) adsorption was investigated. The results showed that, after coating ACC pellets with HAp nanoparticles, the adsorption capacity increased for all applied heavy metal ions. Pb(II) was adsorbed the most, and the best results were achieved at pH 6. The adsorption process followed the pseudo-second-order kinetic model. The adsorption isotherm of Pb(II) is better fitted to the Langmuir model, showing the maximum adsorption capacity of 56 and 47 mg/g by ACC-HAp and ACC pellets, respectively. The desorption efficiency of Pb(II)-loaded ACC-HAp pellets increased by lowering the pH of the acid, resulting in the dissolution of the HAp coating. The best desorption results were achieved with HCl at pH 1 and 1.5. Therefore, the regeneration procedure consisted of desorption, rinsing with distilled water, and re-coating with HAp nanoparticles. After the regeneration process, the Pb(II) adsorption was not affected. However, the desorption stage within the regeneration process decreased the compressive strength of the pellets.
Collapse
Affiliation(s)
- Inga Jurgelane
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048 Riga, Latvia
| |
Collapse
|
8
|
El Kaim Billah R, Ayouch I, Abdellaoui Y, Kassab Z, Khan MA, Agunaou M, Soufiane A, Otero M, Jeon BH. A Novel Chitosan/Nano-Hydroxyapatite Composite for the Adsorptive Removal of Cd(II) from Aqueous Solution. Polymers (Basel) 2023; 15:polym15061524. [PMID: 36987304 PMCID: PMC10058910 DOI: 10.3390/polym15061524] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
A novel polymer bio-composite based on nano-hydroxyapatite (n-Hap) and chitosan (CS) (CS/n-Hap) was synthesized to effectively address toxic cadmium ions removal from water. The composition and structure of CS/n-Hap bio-composite were analyzed through different characterization techniques. XRD patterns affirmed that the crystalline structure of n-Hap remained unaltered during CS/n-Hap synthesis, while FT-IR spectrum sustained all the characteristic peaks of both CS and n-Hap, affirming the successful synthesis of CS/n-Hap. Adsorption studies, including pH, adsorbent dosage, contact time, initial Cd(II) concentration, and temperature, were carried out to explain and understand the adsorption mechanism. Comparatively, CS/n-Hap bio-composite exhibited better Cd(II) adsorption capacity than pristine CS, with an experimental maximum uptake of 126.65 mg/g under optimized conditions. In addition, the kinetic data were well fitted to the pseudo-second-order model, indicating the formation of chemical bonds between Cd(II) and CS/n-Hap during adsorption. Furthermore, the thermodynamic study suggested that Cd(II) adsorption onto CS/n-Hap was endothermic and spontaneous. The regeneration study showed only about a 3% loss in Cd(II) uptake by CS/n-Hap after five consecutive cycles. Thus, a simple and facile approach was here developed to synthesize an eco-friendly and cost-effective material that can be successfully employed for the removal of toxic heavy metal ions from water.
Collapse
Affiliation(s)
- Rachid El Kaim Billah
- Laboratory of Coordination and Analytical Chemistry, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida 24000, Morocco
| | - Ikrame Ayouch
- Laboratory of Materials and Interfacial Systems, Faculty of Sciences Tétouan, University Abdelmalek Essaadi (UAE), P.O. Box 2121, Tétouan 93000, Morocco
- MASCIR Foundation, Rabat Design, Rue Mohamed EL Jazouli, Madinat EL Ifrane, Rabat 10100, Morocco
| | - Youness Abdellaoui
- Faculty of Engineering, Autonomous University of Yucatan, Mérida 97000, Mexico
- Department of Sustainability of Natural Resources and Energy, Center for Research and Advanced Studies of the National Polytechnic Institute, Saltillo 25900, Mexico
| | - Zineb Kassab
- Materials Science Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (M.A.K.); (M.O.)
| | - Mahfoud Agunaou
- Laboratory of Coordination and Analytical Chemistry, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida 24000, Morocco
| | - Abdessadik Soufiane
- Laboratory of Coordination and Analytical Chemistry, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, El Jadida 24000, Morocco
| | - Marta Otero
- Departmento de Química y Física Aplicadas, Universidad de Leon, Campus de Vegazana s/n, 24071 Leon, Spain
- Correspondence: (M.A.K.); (M.O.)
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
9
|
Zou C, Xu Z, Nie F, Guan K, Li J. Application of hydroxyapatite-modified carbonized rice husk for the adsorption of Cr(VI) from aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Xu J, He J, Zhu L, Guo S, Chen H. A novel utilization of raw sepiolite: preparation of magnetic adsorbent directly based on sol-gel for adsorption of Pb(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77448-77461. [PMID: 35676581 DOI: 10.1007/s11356-022-21182-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The constraints of industrial separation technology for low grade sepiolite greatly limit the development and utilization of these potential resources. In this work, a novel sepiolite adsorbent loaded with copper ferrite was prepared by sol-gel method to remove Pb(II) from wastewater. The effects of various factors on Pb(II) removal ratio were investigated. The maximum adsorption capacities at 293, 313, and 333 K were 1285.32, 1325.45, and 1390.54 mg/g, respectively. The adsorption of Pb(II) by magnetic sepiolite was a spontaneous endothermic process. Besides, the adsorption process followed Langmuir isothermal adsorption model and pseudo-second-order kinetic model. The main adsorption mechanism of Pb(II) removal was electrostatic attraction, ion exchange, and surface complexation. The improvement of Pb(II) absorption indicated that the efficient removal of Pb(II) can be realized by phosphate groups introduced in the preparation process and the carbonate groups contained in gangue minerals.
Collapse
Affiliation(s)
- Jiang Xu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, China University of Mining and Technology, Xuzhou, 221116, China
| | - Jingfeng He
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China.
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Lingtao Zhu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, China University of Mining and Technology, Xuzhou, 221116, China
| | - Shulian Guo
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, China University of Mining and Technology, Xuzhou, 221116, China
| | - Hao Chen
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
11
|
Wang T, He J, Lu J, Zhou Y, Wang Z, Zhou Y. Adsorptive removal of PPCPs from aqueous solution using carbon-based composites: A review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Zhao X, Yuan P, Yang Z, Peng W, Meng X, Cheng J. Integration of Micro-Nano-Engineered Hydroxyapatite/Biochars with Optimized Sorption for Heavy Metals and Pharmaceuticals. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1988. [PMID: 35745328 PMCID: PMC9227354 DOI: 10.3390/nano12121988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023]
Abstract
From the perspective of treating wastes with wastes, bamboo sawdust was integrated with a hydroxyapatite (HAP) precursor to create engineered nano-HAP/micro-biochar composites (HBCs) by optimizing the co-precipitated precursor contents and co-pyrolysis temperature (300, 450, 600 °C). The physicochemical properties of HBCs, including morphologies, porosities, component ratios, crystalline structures, surface elemental chemical states, surface functional groups, and zeta potentials as a function of carbonization temperatures and components of precursors, were studied. Biochar matrix as an efficient carrier with enhanced specific surface area to prevent HAP from aggregation was desired. The sorption behavior of heavy metal (Cu(II), Cd(II), and Pb(II)) and pharmaceuticals (carbamazepine and tetracycline) on HBCs were analyzed given various geochemical conditions, including contact time, pH value, ionic strength, inferencing cations and anions, coexisting humic acid, and ambient temperature. HBCs could capture these pollutants efficiently from both simulated wastewaters and real waters. Combined with spectroscopic techniques, proper multiple dominant sorption mechanisms for each sorbate were elucidated separately. HBCs presented excellent reusability for the removal of these pollutants through six recycles, except for tetracycline. The results of this study provide meaningful insight into the proper integration of biochar-mineral composites for the management of aquatic heavy metals and pharmaceuticals.
Collapse
Affiliation(s)
- Xin Zhao
- Graduate Department, Civil Aviation Flight University of China, Guanghan 618307, China;
| | - Peiling Yuan
- Zhengzhou Key Laboratory of Low-Dimensional Quantum Materials and Devices, College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Ziyan Yang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China;
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Wei Peng
- Department of Ecology and Environment of Henan Province, Zhengzhou 450046, China;
| | - Xiang Meng
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.M.); (J.C.)
| | - Jiang Cheng
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.M.); (J.C.)
| |
Collapse
|
13
|
Li X, Guo Y, Cai J, Bao W. Experimental study on the treatment of acid mine drainage containing heavy metals with domestic waste pyrolysis ash. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:3225-3239. [PMID: 35704407 DOI: 10.2166/wst.2022.156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acid mine drainage (AMD) is a special kind of acidic wastewater produced in the process of mining and utilization. In this study, AMD was treated using the adsorption method. Domestic waste was prepared by pyrolysis, and the resulting waste pyrolysis ash adsorbent was studied experimentally by a static adsorption test to treat metal ions in AMD. The results showed that the maximum adsorption amounts of Zn2+, Cu2+, Mn2+, Fe2+, Pb2+, and Cd2+ reached 0.425, 0.593, 0.498, 18.519, 0.055, and 0.039 mg/g, respectively, when the amount of pyrolysis ash was added at 30 g/L, the initial pH of the water was 4.1 and the reaction time was 150 min. It was found that the waste pyrolysis ash could be reused at least three times by using Na2S as the regeneration agent. The SEM and BET characterization results prove that its large specific surface areas and well-developed pore structures have the potential to promote the adsorption of metal ions. The pseudo-second-order kinetic equation and Freundlich adsorption isotherms fit the adsorption process well, and the experiments reveal that the metal ions in AMD are well treated by waste pyrolysis ash through adsorption, flocculation and chemical precipitation. Waste pyrolysis ash has great potential for the treatment of acid mine drainage, providing a new approach to solid waste disposal and new ideas for water treatment as a low-cost alternative material.
Collapse
Affiliation(s)
- Xiangdong Li
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China E-mail:
| | - Yanwen Guo
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China E-mail:
| | - Jieying Cai
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Bao
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China E-mail:
| |
Collapse
|
14
|
Chu Y, Xia M, Wang F, Yan X, Dai Y, Dong L, Zhang Y. The uptake performance and microscopic mechanism of inorganic-organic phosphorus hybrid amorphous hydroxyapatite for multiple heavy metal ions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
The Utilization of Modified Zeolite for the Removal of Cs Ions in an Aqueous Solution: Adsorption Capacity, Isotherms, Kinetics and Microscopic Studies. SUSTAINABILITY 2022. [DOI: 10.3390/su14052615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nuclear energy is a double-edged technology, which has a significant role in the chemical industry, but may bring about radioactivity and destruction. The 2011 Fukushima nuclear power plant accident caused by a tsunami, which flooded and led to tens of millions of disaster debris and tsunami deposits, severely disrupted the electricity supply in Japan and induced USD 211 billion worth of direct economic losses. Cs+ was easily dissolved in this accident, had a high chemical activity, and thus required an appropriate adsorption method. Zeolite is an effective removal adsorbent, which is suitable to be investigated. The present study uses natural zeolite and three inorganic modified zeolites. Furthermore, the effects of various factors are investigated. Kinetic models and the isothermal adsorption mechanism are also conducted. For microscale studies for the adsorption mechanism, scanning electron microscope (SEM) and X-ray diffraction (XRD) were involved in the study. The results indicate that the optimal dosage is 1.1 g and the maximum adsorption rate is around 80%. An alkaline environment is more conducive to the occurrence of adsorption. As for the isotherm and kinetic studies, the data fits better with the Redlich–Peterson isothermal model and intragranular diffusion model. In this small-scale experiment, the highest adsorption capacity was for Mg-zeolite at 6.53 mg/g. Finally, Mg-Zeolite presents the best adsorption capacity.
Collapse
|
16
|
Brazdis RI, Fierascu I, Avramescu SM, Fierascu RC. Recent Progress in the Application of Hydroxyapatite for the Adsorption of Heavy Metals from Water Matrices. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6898. [PMID: 34832297 PMCID: PMC8618790 DOI: 10.3390/ma14226898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022]
Abstract
Wastewater treatment remains a critical issue globally, despite various technological advancements and breakthroughs. The study of different materials and technologies gained new valences in the last years, in order to obtain cheap and efficient processes, to obtain a cleaner environment for future generations. In this context, the present review paper presents the new achievements in the materials domain with highlights on apatitic materials used for decontamination of water loaded with heavy metals. The main goal of this review is to present the adsorptive removal of heavy metals using hydroxyapatite-based adsorbents, offering a general overview regarding the recent progress in this particular area. Developing the current review, an attempt has been made to give appropriate recognition to the most recent data regarding the synthesis methods and targeted pollutants, including important information regarding the synthesis methods and precursors, morphological characteristics of the adsorbent materials and effectiveness of processes.
Collapse
Affiliation(s)
- Roxana Ioana Brazdis
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania;
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Sorin Marius Avramescu
- Research Center for Environmental Protection and Waste Management, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Soseaua Panduri, 050663 Bucharest, Romania
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|
17
|
Ferri M, Campisi S, Polito L, Shen J, Gervasini A. Tuning the sorption ability of hydroxyapatite/carbon composites for the simultaneous remediation of wastewaters containing organic-inorganic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126656. [PMID: 34329080 DOI: 10.1016/j.jhazmat.2021.126656] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
In this paper, we report on the rational design, synthesis, characterization, and application of eco-friendly hydroxyapatite/carbon (HAP/C) composites as effective sorbents for the simultaneous remediation of organic-inorganic pollution in wastewaters. Carbon content in composites ranged from ca. 4 to ca. 20 wt%. Structural and morphological features of the composites were studied by N2 adsorption/desorption analyses, electron microscopy (TEM and HAADF-STEM/EDX) and X-ray powder diffraction (XRPD). These features were correlated with the composition and the exposure of surface functional groups. Surface acid-base groups were assessed by liquid-solid acid/base titrations and results depended on the composition ratio of the two components. Batch adsorption tests, performed with various initial concentrations of pollutant species and dosages, proved that composites merged the sorption properties of the two moieties, being able to simultaneously adsorb organic (methylene blue) and inorganic (Cu(II) and Ni(II)) pollutants. On the optimal carbonaceous scaffold content (ca. 8 wt% carbon), kinetic tests revealed that this composite could almost completely remove high concentrations of co-present pollutants, namely, Cu(II), Ni(II), (300 ppm) and methylene blue (250 ppm) in ca. 1 h, with sorbent dosage of 10 g L-1. In addition, leaching tests proved the permanent retention of the hazardous species on the composites.
Collapse
Affiliation(s)
- Michele Ferri
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Sebastiano Campisi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Laura Polito
- CNR - Consiglio Nazionale delle Ricerche, SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Jianyi Shen
- Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Antonella Gervasini
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
18
|
Ahmed W, Núñez-Delgado A, Mehmood S, Ali S, Qaswar M, Shakoor A, Chen DY. Highly efficient uranium (VI) capture from aqueous solution by means of a hydroxyapatite-biochar nanocomposite: Adsorption behavior and mechanism. ENVIRONMENTAL RESEARCH 2021; 201:111518. [PMID: 34129867 DOI: 10.1016/j.envres.2021.111518] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/22/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
The exploration and rational design of easily separable and highly efficient sorbents with the sufficient capability of retaining radioactive and toxic uranium U(VI) is paramount. In this study, a hydroxyapatite (HAP) biochar nanocomposite (BR/HAP) was successfully fabricated from rice straw biochar (BR), to be used as a new and efficient adsorbent for removing U(VI) from aqueous solution. Both BR and the BR/HAP composite were characterized via Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS) techniques. Batch test results showed that BR/HAP exhibited remarkably higher adsorption capacity than the raw BR. A pseudo-second order kinetic model thoroughly explained the adsorption kinetics, providing the maximum U(VI) adsorption capacities (qe) of 110.56 mg g-1 (R2 = 0.98) and 428.25 mg g-1 (R2 = 0.99), for BR and BR/HAP, respectively, which was indicative of the rate-limited sorption via diffusion or surface complexation after rapid initial adsorption steps. The Langmuir isotherm model fitted the experimental data to accurately simulate the adsorption of U(VI) onto BR and BR/HAP (R2 = 0.97 and R2 = 0.99). The thermodynamic results showed negative values for ΔG°, clearly indicating that the reaction was spontaneous, as well as positive values for ΔH° (11.04 kJ mol-1 and 28.86 kJ mol-1, respectively) and ΔS° (88.97 kJ mol-1 K-1, and 183.42 kJ mol-1 K-1), making clear the endothermic nature of U(VI) adsorption onto both sorbents, with an increase in randomness at a molecular level. FTIR spectroscopy and XPS spectrum further confirmed that the primary mechanisms were ion exchange with UO22+ and surface complexion by -OH and -COOH. In addition, BR/HAP showed an excellent reusability, making it a promising candidate as a new sorbent for U(VI) removal from wastewater. In view of that, it would be interesting to perform future research to explore practical implications of this sorbent material regarding protection from environmental and public health issues related to that pollutant.
Collapse
Affiliation(s)
- Waqas Ahmed
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Sajid Mehmood
- College of Ecology and Environment, Hainan University, Haikou City, 570100, PR China
| | - Sehrish Ali
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Muhammad Qaswar
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, 25198, Lleida, Spain
| | - Di-Yun Chen
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| |
Collapse
|
19
|
Kızıltas Demir S, Tugrul N. Zinc and cadmium adsorption from wastewater using hydroxyapatite synthesized from flue gas desulfurization waste. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1280-1292. [PMID: 34534123 DOI: 10.2166/wst.2021.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The purpose of this work is to produce an alternative cost-effective adsorbent to remove zinc and cadmium from wastewater using hydroxyapatite (HAP) synthesized with hydrothermal method from FGD (Flue gas desulfurization) waste generated by two different coal power plants. The effects of FGD type (Cayırhan and Orhaneli) and molar ratio (H3PO4/CaSO4) (0.6-4.79) on HAP synthesis were investigated. Afterwards, effects of the adsorbent dose (1-2 g/L), heavy metal concentration (30, 40, 50 mg/L) and contact time (1, 2, 3, 4 h) on zinc and cadmium adsorption yield from synthetic wastewater using produced HAP were examined. FGD waste and synthesized FGD-HAP were characterized by X-Ray Diffraction (XRD), Fourier Transformed Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM) and Brunauer-Emmett-Teller (BET) instruments. The zinc and cadmium concentration was studied by Inductively coupled plasma atomic emission spectroscopy (ICP-AES). Maximum zinc adsorption capacity of the Cayırhan FGD-HAP was 49.97 and 49.99 mg/L, Orhaneli FGD-HAP was 49.96 and 49.99 mg/L, for 1 g/L and 2 g/L adsorbent dose, respectively, for 50 mg/L heavy metal concentration and 4 h contact time. Maximum cadmium adsorption capacity of the Cayırhan FGD-HAP was 39.98 and 39.99 mg/L, Orhaneli FGD-HAP was 40 and 39.99 mg/L, for 1 g/L and 2 g/L adsorbent dose, respectively, for 40 mg/L heavy metal concentration and 4 h contact time. Adsorption yields were calculated between 98.53% and 100%. The adsorption data were well explained by a second-order kinetic model, and the Freundlich isotherm model fits the equilibrium data. The adsorption results demonstrated that FGD's waste is an effective source to synthesize HAP, which is used as an adsorbent for zinc and cadmium removal from wastewater due to high adsorption capacity.
Collapse
Affiliation(s)
- Sıla Kızıltas Demir
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Davutpasa Street No. 127, Esenler, 34220 Istanbul, Turkey E-mail: ;
| | - Nurcan Tugrul
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Davutpasa Street No. 127, Esenler, 34220 Istanbul, Turkey E-mail: ;
| |
Collapse
|
20
|
Long Y, Hu X, Jiang J, Hu J, Zhu C, Zhou S. Phosphorus sorption - Desorption behaviors in the sediments cultured with Hydrilla verticillata and Scripus triqueter as revealed by phosphorus fraction and dissolved organic matter. CHEMOSPHERE 2021; 271:129549. [PMID: 33445019 DOI: 10.1016/j.chemosphere.2021.129549] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
The migration of sediment phosphorus (P) could be affected by the existence of aquatic plants. To explore the effects of aquatic plants on the P sorption-desorption behaviors in the sediments, sediment in Caohai wetland was collected and cultured with the submerged plant (Hydrilla verticillata) and emerged plant (Scripus triqueter). Then the sorption and desorption experiments were performed, and physicochemical properties, P fractions, and dissolved organic matter (DOM) characteristics were evaluated. Results showed that the treated sediments exhibited similar P sorption kinetic process fitted well with the two-compartment first-order model. Nevertheless, H. verticillata cultured sediment could be well described by the modified Langmuir isotherm model, while S. triqueter cultured sediment fitted the modified Freundlich equations well. The obvious changing P fractions in cultured sediments were BD-P and NaOH-SRP during sorption. H. verticillata and S. triqueter displayed different sorption-desorption behaviors by altering BD-P, humification index, fluorescence intensity, and PARAFAC component contents in sediments. Compared to raw sediment, H. verticillata presented higher P sorption and lower P release from sediments by decreasing BD-P and increasing DOM (fulvic acid-like and humic-like components) content, while S. triqueter showed adverse P sorption and release effects by reducing DOM components. The growth of submerged plants was suggested to make a positive influence on the high efficiency of P retention capacity and low release risk.
Collapse
Affiliation(s)
- Yunchuan Long
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550003, PR China; Guizhou Academy of Sciences, Guiyang, 550001, PR China
| | - Xuejun Hu
- Guizhou Academy of Sciences, Guiyang, 550001, PR China
| | - Juan Jiang
- Guizhou Academy of Sciences, Guiyang, 550001, PR China
| | - Jing Hu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550003, PR China; Guizhou Academy of Sciences, Guiyang, 550001, PR China
| | - Chengbin Zhu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550003, PR China
| | - Shaoqi Zhou
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550003, PR China; Guizhou Academy of Sciences, Guiyang, 550001, PR China; School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
21
|
Chen Y, Li M, Li Y, Liu Y, Chen Y, Li H, Li L, Xu F, Jiang H, Chen L. Hydroxyapatite modified sludge-based biochar for the adsorption of Cu 2+ and Cd 2+: Adsorption behavior and mechanisms. BIORESOURCE TECHNOLOGY 2021; 321:124413. [PMID: 33285503 DOI: 10.1016/j.biortech.2020.124413] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
This study prepared sewage sludge, a municipal solid waste, into a biochar modified by hydroxyapatite (HAP) as a new and efficient absorbent (HAP-SSBC) for removal of Cu2+ and Cd2+ from aqueous solution. Adsorption experiment revealed that HAP-SSBC exhibited significantly higher adsorption performance than raw sludge-based biochar (SSBC). At 298.15 K, the maximum adsorption capacity of Cu2+ and Cd2+ via Langmuir model were 89.98 and 114.68 mg/g, respectively. Adsorption kinetic experiment revealed that chemisorption was the main reaction. Analysis of X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectrum (XPS) further confirmed that the main mechanisms were ion exchange with Ca2+, complexion by -OH and -COOH, and forming Cu-π or Cd-π binding with aromatic CC on HAP-SSBC surface. Overall, combing HAP and SSBC to be a new adsorbent is beneficial to the resource utilization of sludge and shows a good prospect for heavy metal removal in aqueous solution.
Collapse
Affiliation(s)
- Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Meiling Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yanrong Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, China
| | - Linshenzhang Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Fangting Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
22
|
Beni AA. Design of a solar reactor for the removal of uranium from simulated nuclear wastewater with oil-apatite ELM system. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Liu G, Liao B, Lu T, Wang H, Xu L, Li Z, Ye C. Insight into immobilization of Pb2+ in aqueous solution and contaminated soil using hydroxyapatite/attapulgite composite. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
A facile microwave-assisted synthesis of mesoporous hydroxyapatite as an efficient adsorbent for Pb2+ adsorption. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121491] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Alipour A, Zarinabadi S, Azimi A, Mirzaei M. Adsorptive removal of Pb(II) ions from aqueous solutions by thiourea-functionalized magnetic ZnO/nanocellulose composite: Optimization by response surface methodology (RSM). Int J Biol Macromol 2020; 151:124-135. [DOI: 10.1016/j.ijbiomac.2020.02.109] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 01/18/2023]
|
26
|
Surface modified layered double hydroxide/polyaniline nanocomposites: Synthesis, characterization and Pb2+ removal. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124438] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Fixed bed column and artificial neural network model to predict heavy metals adsorption dynamic on surfactant decorated graphene. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124076] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|