1
|
Kamaraj M, Suresh Babu P, Shyamalagowri S, Pavithra MKS, Aravind J, Kim W, Govarthanan M. β-cyclodextrin polymer composites for the removal of pharmaceutical substances, endocrine disruptor chemicals, and dyes from aqueous solution- A review of recent trends. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119830. [PMID: 38141340 DOI: 10.1016/j.jenvman.2023.119830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Cyclodextrin (CD) and its derivatives are receiving attention as a new-generation adsorbent for water pollution treatment due to their external hydrophilic and internal hydrophobic properties. Among types of CD, β-Cyclodextrin (βCD) has been a material of choice with a proven track record for a range of utilities in distinct domains, owing to its unique cage-like structural conformations and inclusion complex-forming ability, especially to mitigate emerging contaminants (ECs). This article outlines βCD composites in developing approaches of their melds and composites for purposes such as membranes for removal of the ECs in aqueous setups have been explored with emphasis on recent trends. Electrospinning has bestowed an entirely different viewpoint on polymeric materials, comprising βCD, in the framework of diverse functions across a multitude of niches. Besides, this article especially discusses βCD polymer composite membrane-based removal of contaminants such as pharmaceutical substances, endocrine disruptors chemicals, and dyes. Finally, in this article, the challenges and future directions of βCD-based adsorbents are discussed, which may shed light on pragmatic commercial applications of βCD polymer composite membranes.
Collapse
Affiliation(s)
- M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology-Ramapuram, Chennai, 600089, Tamil Nadu, India; Life Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - P Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India.
| | - S Shyamalagowri
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, 600030, Tamil Nadu, India
| | - M K S Pavithra
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamil Nadu, India
| | - J Aravind
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
2
|
Bunge A, Leoștean C, Turcu R. Synthesis of a Magnetic Nanostructured Composite Sorbent Only from Waste Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7696. [PMID: 38138838 PMCID: PMC10744448 DOI: 10.3390/ma16247696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Water pollution is a big problem for the environment, and thus depollution, especially by adsorption processes, has garnered a lot of interest in research over the last decades. Since sorbents would be used in large quantities, ideally, they should be cheaply prepared in scalable reactions from waste materials or renewable sources and be reusable. Herein, we describe a novel preparation of a range of magnetic sorbents only from waste materials (sawdust and iron mud) and their performance in the adsorption of several dyes (methylene blue, crystal violet, fast green FCF, and congo red). The preparation is performed in a hydrothermal process and is thus easily scalable and requires little sophisticated equipment. The magnetic nanostructured materials were analyzed using FTIR, VSM, SEM/EDX, XRD, and XPS. For crystal violet as a pollutant, more in-depth adsorption studies were performed. It was found that the best-performing magnetic sorbent had a maximum sorption capacity of 97.9 mg/g for crystal violet (methylene blue: 149.8 mg/g, fast green FCF: 52.2 mg/g, congo red: 10.5 mg/g), could be reused several times without drastic changes in sorption behavior, and was easily separable from the solution by simply applying a magnet. It is thus envisioned to be used for depollution in industrial/environmental applications, especially for cationic dyes.
Collapse
Affiliation(s)
- Alexander Bunge
- National Institute R&D for Isotopic and Molecular Technology, 67-103 Donat Street, 400293 Cluj-Napoca, Romania;
| | | | - Rodica Turcu
- National Institute R&D for Isotopic and Molecular Technology, 67-103 Donat Street, 400293 Cluj-Napoca, Romania;
| |
Collapse
|
3
|
Li K, Li B, Li X. A novel material poly(N-acryloyl-L-glycine)-brush grafted N-doped magnetic biochar by surface-initiated RAFT polymerization for efficient elimination of heavy metal ions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Zubair M, Aziz HA, Ihsanullah I, Ahmad MA, Al-Harthi MA. Enhanced removal of Eriochrome Black T from water using biochar/layered double hydroxide/chitosan hybrid composite: Performance evaluation and optimization using BBD-RSM approach. ENVIRONMENTAL RESEARCH 2022; 209:112861. [PMID: 35143802 DOI: 10.1016/j.envres.2022.112861] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
In this research work, a novel hybrid composite consisting of biochar (B), layered double hydroxide (CuFe) and chitosan (CS) (B-CuFe-CS) was produced using an ultrasonication-assisted co-precipitation method. The resultant composite was employed for adsorptive removal of Eriochrome black T (EBT) from water. Physicochemical characterization indicated that the B-CuFe-CS containing 10 wt % CS exhibited a heterogeneous structure with better crystallographic and textural characteristics. The B-CuFe-CS with abundant surface functionalities (-CO, -C-O, -OH, -NO3, and MMO), facilitates faster and enhanced removal of the EBT. The kinetic results showed better fitting to the pseudo-second order model, and equilibrium was achieved within 30 min. Equilibrium data was well explained by Langmuir and Redlich Peterson isotherm models (R2 > 0.98), indicating the EBT removal onto B-CuFe-CS followed monolayer adsorption. The maximum adsorption capacity was 806.4 mg/g, which was higher than pristine B-CuFe (476.19 mg/g) and many other adsorbents. The spectroscopic analysis (FTIR and XPS) and experimental results suggested that EBT adsorption is mainly governed by electrostatic, chemical and anion-exchange interactions. It is evident from these results that coupling B-CuFe composite with bio-filler (chitosan) resulted in an efficient bio-adsorbent to effectively purify dye-contaminated water streams.
Collapse
Affiliation(s)
- Mukarram Zubair
- Department of Environmental Engineering, Imam Abdulrahman bin Faisal University, Dammam, 31982, Saudi Arabia.
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia; Solid Waste Management Cluster, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Ihsanullah Ihsanullah
- Center for Environment & Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Mohd Azmier Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Mamdouh A Al-Harthi
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia; Center of Research Excellences in Nanotechnology, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
5
|
Li K, Li X, Li B. Investigation the adsorption behavior of functional carbon-based composites for efficient removing anions / cations in single and multicomponent systems. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Nanoarchitectonics of Chitosan/Glutaraldehyde/Zinc Oxide as a Novel Composite for the Efficient Removal of Eriochrome Black T Dye from Aqueous Media. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02258-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Chodankar D, Vora A, Kanhed A. β-cyclodextrin and its derivatives: application in wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1585-1604. [PMID: 34686957 DOI: 10.1007/s11356-021-17014-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Water is one of the basic necessities of life and having clean water is extremely important for human health. In recent years, β-cyclodextrin (β-CD)-based polymers and nanosystems have been extensively studied as adsorbents for the purpose of water purification. They present high efficiency and capability to remove inorganic, organic, and heavy metal impurities from wastewater as compared to conventional methods of water purification. β-CDs are cyclic polysaccharides having specific dimension of hydrophobic cavities and hydrophilic functional groups. The hydrophobic cavities form inclusion complexes through host-guest interactions. The hydroxyl groups form sites of hydrogen bonding and electrostatic interaction with pollutants. Additionally, they are also the sites of modification to bring about different derivatisation and polymerization reactions in order to impart desirable properties for efficient adsorption material. This article comprises of various derivatives of β-cyclodextrins: their nanoparticulate systems and their characterization and applications to remove different types of impurities from wastewater. The chemical reactions for their synthesis and mechanism of adsorption are highlighted.
Collapse
Affiliation(s)
- Diksha Chodankar
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, V.L.Mehta Road, Vile Parle (West), Mumbai, 400056, India
| | - Amisha Vora
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, V.L.Mehta Road, Vile Parle (West), Mumbai, 400056, India
| | - Ashish Kanhed
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, V.L.Mehta Road, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
8
|
Skwierawska AM, Nowacka D, Nowicka P, Rosa S, Kozłowska-Tylingo K. Structural Adaptive, Self-Separating Material for Removing Ibuprofen from Waters and Sewage. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7697. [PMID: 34947291 PMCID: PMC8709425 DOI: 10.3390/ma14247697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
β-Cyclodextrin nanosponge (β-CD-M) was used for the adsorption of ibuprofen (IBU) from water and sewage. The obtained material was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH), Harkins and Jura t-Plot, zeta potential, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and elementary analysis (EA). Batch adsorption experiments were employed to investigate the effects of the adsorbent dose, initial IBU concentration, contact time, electrolyte ions and humic acids, and sewage over adsorption efficiency. The experimental isotherms were show off using Langmuir, Freundlich, Hill, Halsey and Sips isotherm models and thermodynamic analysis. The fits of the results were estimated according to the Sips isotherm, with a maximum adsorption capacity of 86.21 mg g-1. The experimental kinetics were studied by pseudo-first-order, pseudo-second-order, Elovich, modified Freundlich, Weber Morris, Bangham's pore diffusion, and liquid film diffusion models. The performed experiments revealed that the adsorption process fits perfectly to the pseudo-second-order model. The Elovich and Freundlich models indicate chemisorption, and the kinetic adsorption model itself is complex. The data obtained throughout the study prove that this nanosponge (NS) is extremely stable, self-separating, and adjusting to the guest structure. It also represents a potential biodegradable adsorbent for the removal IBU from wastewaters.
Collapse
Affiliation(s)
- Anna Maria Skwierawska
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Dominika Nowacka
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Paulina Nowicka
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Sandra Rosa
- Department of Chemistry and Technology of Functional Materials, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (D.N.); (P.N.); (S.R.)
| | - Katarzyna Kozłowska-Tylingo
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| |
Collapse
|
9
|
Selvasembian R, Gwenzi W, Chaukura N, Mthembu S. Recent advances in the polyurethane-based adsorbents for the decontamination of hazardous wastewater pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125960. [PMID: 34229405 DOI: 10.1016/j.jhazmat.2021.125960] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
The pollution of aquatic systems with noxious organic and inorganic contaminants is a challenging problem faced by most countries. Water bodies are contaminated with diverse inorganic and organic pollutants originating from various diffuse and point sources, including industrial sectors, agricultural practices, and domestic wastes. Such hazardous water pollutants tend to accumulate in the environmental media including living organisms, thereby posing significant environmental health risks. Therefore, the remediation of wastewater pollutants is a priority. Adsorption is considered as the most efficient technique for the removal of pollutants in aqueous systems, and the deployment of suitable adsorbents plays a vital role for the sustainable application of the technique. The present review gives an overview of polyurethane foam (PUF) as an adsorbent, the synthesis approaches of polyurethane, and characterization aspects. Further emphasis is on the preparation of the various forms of polyurethane adsorbents, and their potential application in the removal of various challenging water pollutants. The removal mechanisms, including adsorption kinetics, isotherms, thermodynamics, and electrostatic and hydrophobic interactions between polyurethane adsorbents and pollutants are discussed. In addition, regeneration, recycling and disposal of spent polyurethane adsorbents are reported. Finally, key knowledge gaps on synthesis, characterization, industrial applications, life cycle analysis, and potential health risks of polyurethane adsorbents are discussed.
Collapse
Affiliation(s)
- Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India.
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe.
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, South Africa.
| | - Siyanda Mthembu
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, South Africa.
| |
Collapse
|
10
|
Mokhtari A, Sabzi M, Azimi H. 3D porous bioadsorbents based on chitosan/alginate/cellulose nanofibers as efficient and recyclable adsorbents of anionic dye. Carbohydr Polym 2021; 265:118075. [DOI: 10.1016/j.carbpol.2021.118075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
|
11
|
Fu L, Pan X, Zu J, He L. Synthesis of diamide-based resin for selective separation of 99Tc. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Tian B, Hua S, Tian Y, Liu J. Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1317-1340. [PMID: 33079345 DOI: 10.1007/s11356-020-11168-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Water is a vital substance that constitutes biological structures and sustains life. However, water pollution is currently among the major environmental challenges and has attracted increasing study attention. How to handle contaminated water now mainly focuses on removing or reducing the pollutants from the wastewater. Cyclodextrin derivatives, possessing external hydrophilic and internal hydrophobic properties, have been recognized as new-generation adsorbents to exert positive effects on water pollution treatment. This article outlines recent contributions of cyclodextrin-based adsorbents on wastewater treatment, highlighting different adsorption mechanisms of cyclodextrin-based adsorbents under different influencing factors. The crosslinked and immobilized cyclodextrin-based adsorbents all displayed outstanding adsorption capacities. Particularly, according to specific pollutants including metal ions, organic chemicals, pesticides, and drugs in wastewater, this article has classified and organized various cyclodextrin-based adsorbents into tables, which could pave an intuitive shortcut for designing and developing efficient cyclodextrin-based adsorbents for targeted wastewater pollutants. Besides, this article specially discusses cost-effectiveness and regeneration performance of current cyclodextrin-based adsorbents. Finally, the challenges and future directions of cyclodextrin-based adsorbents are prospected in this article, which may shed substantial light on practical industrial applications of cyclodextrin-based adsorbents.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi, 830046, China.
| | - Shiyao Hua
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Yu Tian
- School of Computer Science and Engineering, Beihang University, Beijing, 100083, China
| | - Jiayue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
13
|
Sadeghi S, Zakeri HR, Saghi MH, Ghadiri SK, Talebi SS, Shams M, Dotto GL. Modified wheat straw-derived graphene for the removal of Eriochrome Black T: characterization, isotherm, and kinetic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3556-3565. [PMID: 32918690 DOI: 10.1007/s11356-020-10647-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
A cost-effective and environment-benign adsorbent was prepared from an abundant agro-waste material. Wheat straw was reduced to graphene and then modified by crosslinking to epichlorohydrin. During the conversion process of wheat straw to graphene, the specific surface area increased more than 100 times (from 4 to 415 m2 g-1). The adsorption efficiency of raw wheat straw, graphene nanosheets, and modified graphene against Eriochrome Black T (EBT) were 8.0, 34.7, and 74.4%, respectively. The modified graphene was further investigated for the effect of environmental condition, i.e., pH (3 to 11), EBT concentration (25-100 mg L-1), adsorbent dosage (0.25-0.75 g L-1), contact time (5-60 min), and solution temperature (30-60 °C). The dye removal remained at a high level under a wide range of pH from 3 to 9. The EBT removal decreased from 87.3 to 54.5 by increasing dye concentration and increased from 38.2 to 85.4% by increasing adsorbent dose in the studied ranges. Dye removal also increased by mixing time from 5 to 30 min, whereas a slight drop was observed by continuing agitation up to 60 min. Conducting experiments at various temperatures revealed an endothermic process. Pseudo-first-order and pseudo-second-order models were adequate to represent the adsorption kinetics. Isotherm models suggest a multilayer adsorption of EBT molecules on heterogeneous modified graphene surface with a maximum adsorption capacity of 146.2 mg g-1. The present work demonstrated that the modified graphene obtained from available and low-cost agro-wastes could be used effectively as adsorbent against EBT from aqueous media.
Collapse
Affiliation(s)
- Shahram Sadeghi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Spiritual Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hamid Reza Zakeri
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hossien Saghi
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyedeh Solmaz Talebi
- Department of Epidemiology, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Mahmoud Shams
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
Synthesis, Characterization and Dye Adsorption Performance of Strontium Ferrite decorated Bentonite-CoNiAl Magnetic Composite. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04544-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Lu Q, Li N, Li J. Supramolecular adsorption of cyclodextrin/polyvinyl alcohol film for purification of organic wastewater. JOURNAL OF POLYMER ENGINEERING 2020. [DOI: 10.1515/polyeng-2019-0253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractInto purified organic wastewater, α-, β-, and γ-cyclodextrin (α-, β-, and γ-CD) were added to polyvinyl alcohol (PVA) with ammonium persulfate as the crosslinker. The CD/PVA composite film with low water solubility and supramolecular adsorption was prepared by solvent evaporation. Fourier transform infrared spectroscopy showed that when CD was successfully added to PVA, the crosslinking process had no effect on -OH, and the structure was stable after soaking in water for 120 h. Solubility experiments showed that the stability of PVA in water was significantly improved. The results of phenolphthalein adsorption showed that the composite film followed the Langmuir isothermal adsorption and the pseudo-second-order kinetics. According to the Langmuir equation, the theoretical maximum adsorption capacities of α-, β- and γ-CD/PVA composite films were 0.41, 2.05, and 2.00 mg/g, respectively. The parameters of the Freundlich equation indicate that the adsorption of the composite film is physical adsorption. The time for α-CD/PVA composite film to reach equilibrium was the shortest, while the longest was for β-CD/PVA composite film. The intraparticle diffusion model showed that the adsorption was mainly affected by the diffusion of the boundary layer, and the diffusion rate limitation of the boundary layer of the high-concentration phenolphthalein solution was more obvious.
Collapse
Affiliation(s)
- Qingchen Lu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P.R. China
| | - Nana Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P.R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P.R. China
| | - Jialu Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P.R. China
- Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Tiangong University, Tianjin 300387, P.R. China
| |
Collapse
|
16
|
Li L, Liu H, Li W, Liu K, Tang T, Liu J, Jiang W. One-step synthesis of an environment-friendly cyclodextrin-based nanosponge and its applications for the removal of dyestuff from aqueous solutions. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04059-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|