1
|
Ng YJ, Lim HR, Khoo KS, Chew KW, Chan DJC, Bilal M, Munawaroh HSH, Show PL. Recent advances of biosurfactant for waste and pollution bioremediation: Substitutions of petroleum-based surfactants. ENVIRONMENTAL RESEARCH 2022; 212:113126. [PMID: 35341755 DOI: 10.1016/j.envres.2022.113126] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Biosurfactant is one of the emerging compounds in the industrial sector that behaves similarly with their synthetic counterparts, as they can reduce surface and interfacial tension between two fluids. Their unique properties also enable biosurfactant molecules to be able to clump together to form micelles that can capture targeted molecules within a solution. Biosurfactants are compared with synthetic surfactants on various applications for which the results shows that biosurfactants are fully capable of replacing synthetic surfactants in applications including enhanced oil recovery and wastewater treatment applications. Biosurfactants are able to be used in different applications as well since they are less toxic than synthetic surfactants. These applications include bioremediation on oil spills in the marine environment and bioremediation for contaminated soil and water, as well as a different approach on the pharmaceutical applications. The future of biosurfactants in the pharmaceutical industry and petroleum industry as well as challenges faced for implementing biosurfactants into large-scale applications are also discussed at the end of this review.
Collapse
Affiliation(s)
- Yan Jer Ng
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Kuan Shiong Khoo
- Faculty of Applied Science, UCSI University. No. 1, Jalan Menara Gading, UCSI Heights, 56000, Cheras Kuala Lumpur, Malaysia.
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| | - Muhammad Bilal
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Bandung 40154, West Java, Indonesia.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Becky Miriyam I, Anbalagan K, Magesh Kumar M. Phthalates removal from wastewater by different methods - a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2581-2600. [PMID: 35576254 DOI: 10.2166/wst.2022.133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phthalate esters are commonly used as plasticizers to improve the durability and workability of polymeric materials, locating and identifying them in various contexts has become a major challenge. Because of their ubiquitous use in plastic packaging and personal care items, as well as their tendency to leach out of these materials, phthalates have been detected in a variety of aquatic situations, including surface water, groundwater, drinking water, and wastewater. Phthalate esters have been shown to affect reproductive health and physical growth by disrupting the endocrine system. As a result, developing energy-efficient and effective technologies to eliminate these harmful substances from the atmosphere has become more important and urgent. This paper examines the existing techniques for treating phthalates and degradation mechanisms, as well as knowledge gaps and future research directions. These technologies include adsorption, electrochemical, photocatalysis, membrane filtration and microbial degradation. Adsorption and photo catalysis are the most widely used techniques for phthalate removal, according to the literature survey papers.
Collapse
Affiliation(s)
- I Becky Miriyam
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India E-mail:
| | - K Anbalagan
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India E-mail:
| | - M Magesh Kumar
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India E-mail:
| |
Collapse
|
3
|
Gogoi AJ, Pulikkal AK. Clay–gemini surfactant hybrid materials for elimination of inorganic pollutants: A comprehensive review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
4
|
Comparative adsorption of polycylic aromatic compounds on organo-vermiculites modified by imidazolium- and pyridinium-based gemini surfactants. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Lv W, Shen T, Ding F, Mao S, Ma Z, Xie J, Gao M. A novel NH2-rich polymer/graphene oxide/organo-vermiculite adsorbent for the efficient removal of azo dyes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
|
7
|
Dolatabadi M, Świergosz T, Ahmadzadeh S. Electro-Fenton approach in oxidative degradation of dimethyl phthalate - The treatment of aqueous leachate from landfills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145323. [PMID: 33578151 DOI: 10.1016/j.scitotenv.2021.145323] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/17/2021] [Indexed: 05/21/2023]
Abstract
Herein, the dimethyl phthalate (DMP) contamination, as an emerging pollutant, has been cost-effectively removed from landfill leachate through an advanced oxidation process, that is the electro-Fenton (EF) process. For this purpose, a quadratic polynomial model was developed via response surface methodology (RSM). Furthermore, the analysis of variance (ANOVA) was performed for evaluating the significance of the proposed assumptions. The actual removal rate of 99.1% was obtained with optimal values of 4 mg L-1 of initial DMP concentration, 50 mM Na2SO4, 600 μL L-1 H2O2, 8-minute electrolytic time, solution pH 3 and 6 mA cm-2 current density for the process variables and was consistent with the expected 99.6% removal rate. Satisfactory correlation coefficients were obtained, and a non-significant value of 0.0618 for model mismatch confirmed that the proposed model is extremely important and can successfully predict the effectiveness of DMP removal. The kinetics of the process and the effect of the presence of some radical scavengers were studied to understand the exact mechanism of DMP degradation. Therefore, it was observed that the reaction of hydroxyl radicals with DMPs followed the first-order kinetics model. Moreover, it was established that the optimal ratio of H2O2/Fe2+ mole was 1.6 and the electricity consumption was 0.157 kWh m-3. The elaborated treatment model used to remove DMP from landfill leachate showed that DMP contamination was effectively removed with a 95.6% removal efficiency in the investigating process.
Collapse
Affiliation(s)
- Maryam Dolatabadi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran; Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tomasz Świergosz
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Kraków, Poland.
| | - Saeid Ahmadzadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Cao H, Hu Y, Xu W, Wang Y, Guo X. Recent progress in the assembly behavior of imidazolium-based ionic liquid surfactants. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114354] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Synergy of imidazolium ionic liquids and flexible anionic polymer for controlling facilely montmorillonite swelling in water. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Zhang P, Zhao DQ. Characterization and Dimethyl Phthalate Flocculation Performance of the Cationic Polyacrylamide Flocculant P(AM-DMDAAC) Produced by Microwave-Assisted Synthesis. Molecules 2020; 25:E624. [PMID: 32023918 PMCID: PMC7037971 DOI: 10.3390/molecules25030624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 11/17/2022] Open
Abstract
A composite flocculant P(AM-DMDAAC) was synthesized by the copolymerization of acrylamide (AM) and dimethyl diallyl ammonium chloride (DMDAAC). By using microwave (MV) assistance with ammonium persulfate as initiator, the synthesis had a short reaction time and yielded a product with good solubility. Fourier-transform infrared spectroscopy, scanning electron microscopy, and differential thermal analysis-thermogravimetric analysis were employed to determine the structure and morphology of P(AM-DMDAAC). The parameters affecting the intrinsic viscosity of P(AM-DMDAAC), such as MV time, mass ratio of DMDAAC to AM, bath time, reaction temperature, pH value, and the dosages of ammonium persulfate initiator, EDTA, sodium benzoate, and urea were examined. Results showed that the optimum synthesis conditions were MV time of 1.5 min, m(DMDAAC):m(AM) of 4:16, 0.5 wt‱ initiator, 0.4 wt‱ EDTA, 0.3 wt‱ sodium benzoate, 2 wt‱ urea, 4 h bath time, reaction temperature of 40 °C, and pH of 2. The optimal dimethyl phthalate (DMP) removal rate can reach 96.9% by using P(AM-DMDAAC), and the P(AM-DMDAAC) had better flocculation than PAM, PAC, and PFS.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Dong Qin Zhao
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| |
Collapse
|