1
|
Rani A, Lal AS, Saravanan P. Bismuth niobate/g-C 3N 4 heterojunction for maximised visible light photocatalytic removal of Bisphenol A. CHEMOSPHERE 2024; 364:143198. [PMID: 39209037 DOI: 10.1016/j.chemosphere.2024.143198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The occurrence of xenobiotic pollutants in the aquatic environment troubling the present and future generation. Persistent Organic Pollutants (POPs) is one such class of xenobiotic that was dominant in that category. In the present paper, a competent visible light driven heterojunction photocatalyst combining Bismuth niobate and g-C3N4 was developed for the effective removal of Bisphenol A (BPA), a notable POP. Before constructing the heterostructure the calcination temperature for bismuth niobate synthesis was optimised for achieving most proficient photocatalysis. A phase change in the crystal structure of bismuth niobate was apparent. The Bi3NbO7 at 300-500 °C transformed to Bi5Nb3O15 at 600-700 °C and to orthorhombic BiNbO4 at 900 °C as the temperature was enhanced. With the increment in the temperature the light absorbance of the materials enhanced in UV and reduced in visible light. Thus, the bismuth niobate obtained by calcining at 500 °C demonstrated highest BPA removal under sunlight was chosen for heterojunction construction. After the heterojunction construction with g-C3N4 the crystal lattice strain was observed to be reduced for all composites, and a greater mobility of charge carriers was observed within the composite. The presence of either of the materials resulted in a different band structure and thus Type II and Z-scheme pathway was inferred. A commendable photocatalytic activity was observed for B1.5G and BG1.5 under sunlight and LED light respectively. Hight amount of g-C3N4 in the BG1.5 resulted in maximum absorbance in LED light. Superoxide radicals (*O2-) radicals were observed as major radicals for B1.5G composite, whereas both *O2- and holes (h+) were the major radicals in case of BG1.5.
Collapse
Affiliation(s)
- Ankita Rani
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aditya Swarup Lal
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Pichiah Saravanan
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India.
| |
Collapse
|
2
|
Xu J, Bian Y, Tian W, Pan C, Wu CE, Xu L, Wu M, Chen M. The Structures and Compositions Design of the Hollow Micro-Nano-Structured Metal Oxides for Environmental Catalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1190. [PMID: 39057867 PMCID: PMC11280307 DOI: 10.3390/nano14141190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
In recent decades, with the rapid development of the inorganic synthesis and the increasing discharge of pollutants in the process of industrialization, hollow-structured metal oxides (HSMOs) have taken on a striking role in the field of environmental catalysis. This is all due to their unique structural characteristics compared to solid nanoparticles, such as high loading capacity, superior pore permeability, high specific surface area, abundant inner void space, and low density. Although the HSMOs with different morphologies have been reviewed and prospected in the aspect of synthesis strategies and potential applications, there has been no systematic review focusing on the structures and compositions design of HSMOs in the field of environmental catalysis so far. Therefore, this review will mainly focus on the component dependence and controllable structure of HSMOs in the catalytic elimination of different environmental pollutants, including the automobile and stationary source emissions, volatile organic compounds, greenhouse gases, ozone-depleting substances, and other potential pollutants. Moreover, we comprehensively reviewed the applications of the catalysts with hollow structure that are mainly composed of metal oxides such as CeO2, MnOx, CuOx, Co3O4, ZrO2, ZnO, Al3O4, In2O3, NiO, and Fe3O4 in automobile and stationary source emission control, volatile organic compounds emission control, and the conversion of greenhouse gases and ozone-depleting substances. The structure-activity relationship is also briefly discussed. Finally, further challenges and development trends of HSMO catalysts in environmental catalysis are also prospected.
Collapse
Affiliation(s)
- Jingxin Xu
- State Key Laboratory of Low-Carbon Smart Coal-Fired Power Generation and Ultra-Clean Emission, China Energy Science and Technology Research Institute Co., Ltd., Nanjing 210023, China; (J.X.); (W.T.)
| | - Yufang Bian
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing 210044, China;
| | - Wenxin Tian
- State Key Laboratory of Low-Carbon Smart Coal-Fired Power Generation and Ultra-Clean Emission, China Energy Science and Technology Research Institute Co., Ltd., Nanjing 210023, China; (J.X.); (W.T.)
| | - Chao Pan
- State Key Laboratory of Low-Carbon Smart Coal-Fired Power Generation and Ultra-Clean Emission, China Energy Science and Technology Research Institute Co., Ltd., Nanjing 210023, China; (J.X.); (W.T.)
| | - Cai-e Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Leilei Xu
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing 210044, China;
| | - Mei Wu
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China
| | - Mindong Chen
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing 210044, China;
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230009, China
| |
Collapse
|
3
|
Yang Y, Zhang W, Zhang L, Guo M, Xiang C, Ren M, Han Y, Shi J, Li H, Xu X. The development of multifunctional materials for water pollution remediation using pollen and sporopollenin. Int J Biol Macromol 2024; 273:133051. [PMID: 38862057 DOI: 10.1016/j.ijbiomac.2024.133051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Pollen is a promising material for water treatment owing to its renewable nature, abundant sources, and vast reserves. The natural polymer sporopollenin, found within pollen exine, possesses a distinctive layered porous structure, mechanical strength, and stable chemical properties, which can be utilized to prepare sporopollenin exine capsules (SECs). Leveraging these attributes, pollen or SECs can be used to develop water pollution remediation materials. In this review, the structure of pollen is first introduced, followed by the categorization of various methods for extracting SECs. Then, the functional expansion of pollen adsorbents, with an emphasis on their recyclability, reusability, and visual sensing capabilities, as opposed to mere functional group modification, is discussed. Furthermore, the progress made in utilizing pollen as a biological template for synthesizing catalysts is summarized. Intriguingly, pollen can also be engineered into self-propelled micromotors, enhancing its potential application in adsorption and catalysis. Finally, the challenges associated with the application of pollen in water pollution treatment are discussed. These challenges include the selection of environmentally friendly, non-toxic reagents in synthesizing pollen water remediation products and the large-scale application after synthesis. Moreover, the multifunctional synthesis and application of different water remediation products are prospected.
Collapse
Affiliation(s)
- Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Wenqi Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Lu Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Mengyao Guo
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Chengwen Xiang
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Mengyu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hongliang Li
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China.
| | - Xiaoguang Xu
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Tang Q, Liu C, Lv D, Zhao L, Jiang L, Wang J. Biotemplated Fe/La-co-doped TiO 2 for photocatalytic depth treatment of compressed leachate from refuse transfer station. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40941-40957. [PMID: 38837031 DOI: 10.1007/s11356-024-33870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Compressed leachate is a contaminated liquid containing various organic and inorganic pollutants produced in municipal refuse transfer stations, which pollute soil and groundwater, posing serious risks to the environment and human health. The Environmental Technology Co., Ltd. (Shenzhen, Guangdong Province, South China) treated compressed leachate obtained from a refuse transfer station. The chemical oxygen demand (COD) (641.2 mg/L) of treated compressed leachate did not meet the wastewater quality standards in China for discharge into municipal sewers (COD ≤ 500 mg/L) and the company's design discharge requirements (COD ≤ 400 mg/L). Therefore, their further in-depth treatment is necessary. To this end, waste tobacco leaves were used as the biotemplate herein, and Fe/La-co-doped TiO2 (xFe,yLa)-TTiO2(g) was synthesized using a solvothermal-assisted biotemplating method. The photocatalytic depth treatment of compressed leachate was performed under simulated solar light using the prepared catalysts. After (3Fe,3La)-TTiO2(g) treatment, the COD of the leachate decreased from 641.2 to 280.1 mg/L, and the COD removal rate was 1.2, 1.1, and 1.6 times higher than that of pure Fe-doped, La-doped and non-biological template TiO2, respectively. Characterization confirmed that the biological template endowed the catalyst with a unique morphology and high specific surface area. Its rich activity sites are conducive to enhancing the adsorption capacity of pollutants and providing an ideal place for photocatalytic reactions. Co-doping with iron and lanthanum ions altered the band structure of TiO2 and promoted the interconversion of Fe3+/Fe2+ and La3+/La2+ during photocatalysis. First-principles density functional theory simulations demonstrated that co-doping Fe and La in TiO2 created impurity levels that facilitated the transfer of photogenerated electrons. This study provides a new purification pathway for the depth treatment of compressed leachate.
Collapse
Affiliation(s)
- Qinyuan Tang
- School of Chemical Sciences and Engineering, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming, 650091, People's Republic of China
| | - Chang Liu
- School of Chemical Sciences and Engineering, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming, 650091, People's Republic of China
| | - Die Lv
- School of Chemical Sciences and Engineering, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming, 650091, People's Republic of China
| | - Lixia Zhao
- School of Chemical Sciences and Engineering, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming, 650091, People's Republic of China
| | - Liang Jiang
- School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jiaqiang Wang
- School of Chemical Sciences and Engineering, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming, 650091, People's Republic of China.
- School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
5
|
Gomathi A, Priyadharsan A, Handayani M, Kumar KAR, Saranya K, Kumar AS, Srividhya B, Murugesan K, Maadeswaran P. Pioneering superior efficiency in Methylene blue and Rhodamine b dye degradation under solar light irradiation using CeO 2/Co 3O 4/g-C 3N 4 ternary photocatalysts. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124125. [PMID: 38461561 DOI: 10.1016/j.saa.2024.124125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
In this research work, we have successfully synthesized the CeO2/Co3O4/g-C3N4 ternary nanocomposite for hydrothermal method for photocatalytic applications. The synthesized nanocomposites were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy TEM, Photoluminescent spectra (PL), X-ray photoelectron spectroscopy (XPS), Brunauer- Emmett-Teller (BET) and Ultraviolet diffuse reflectance spectroscopy (UV-DRS) technique. As per the optical spectroscopic investigations CeO2/Co3O4/g-C3N4 ternary nanocomposite exhibited the high optical absorption range and its band gap is reduced from 2.95 eV to1.83 eV. The PL spectra showed the lowered emission peak intensity of ternary nanocomposite which is revealed that the better charge separation and slow recombination of electron hole pairs. The highest photocatalytic degradation efficiency of CeO2/Co3O4/g-C3N4 ternary nanocomposite showed 93 % and 86 % towards the pollutant methylene blue and Rhodamine B. Moreover, photodegradation of the pollutants followed pseudo-first order kinetics with a very high-rate constant of 0.02211 min-1 and 0.017756 min-1. Additionally, the ternary nano catalyst was delivered the remarkable stability performance even after five cycles. This research may provide a low-cost approach for synthesized visible light responsive catalysts for use in environmental remediation applications.
Collapse
Affiliation(s)
- Abimannan Gomathi
- Advanced Nanomaterials and Energy Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem 636011, Tamil Nadu, India
| | - Arumugam Priyadharsan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India; Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Puspiptek Area, Tangerang Selatan, Banten 15314, Indonesia
| | - Murni Handayani
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Puspiptek Area, Tangerang Selatan, Banten 15314, Indonesia
| | - K A Ramesh Kumar
- Advanced Bioenergy and Biofuels Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem 636011, Tamil Nadu, India
| | - K Saranya
- Department of Physics, Government College of Engineering, Thanjavur 613402, Tamil Nadu, India
| | - A Senthil Kumar
- Department of Applied Science, PSG College of Technology, Coimbatore 641004, Tamilnadu, India
| | - Balakrishnan Srividhya
- Department of Chemistry, KSR College of Technology, Tiruchengode 637 215, Tamil Nadu, India
| | - K Murugesan
- Department of Environmental Science, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Palanisamy Maadeswaran
- Advanced Nanomaterials and Energy Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem 636011, Tamil Nadu, India.
| |
Collapse
|
6
|
Malmir M, Heravi MM, Shafiei Toran Poshti E. Facile Cu-MOF-derived Co 3O 4 mesoporous-structure as a cooperative catalyst for the reduction nitroarenes and dyes. Sci Rep 2024; 14:6846. [PMID: 38514684 PMCID: PMC10958026 DOI: 10.1038/s41598-024-52708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/23/2024] [Indexed: 03/23/2024] Open
Abstract
The present study describes the environmentally friendly and cost-effective synthesis of magnetic, mesoporous structure-Co3O4 nanoparticles (m-Co3O4) utilizing almond peel as a biotemplate. This straightforward method yields a material with high surface area, as confirmed by various characterization techniques. Subsequently, the utilization of m-Co3O4, graphene oxide (GO), Cu(II)acetate (Cu), and asparagine enabled the successful synthesis of a novel magnetic MOF, namely GO-Cu-ASP-m-Co3O4 MOF. This catalyst revealed remarkable stability that could be easily recovered using a magnet for consecutive use without any significant decline in activity for eight cycles in nitro compound reduction and organic dye degradation reactions. Consequently, GO-Cu-ASP-m-Co3O4 MOF holds immense potential as a catalyst for reduction reactions, particularly in the production of valuable amines with high industrial value, as well as for the elimination of toxic-water pollutants such as organic dyes.
Collapse
Affiliation(s)
- Masoume Malmir
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, PO Box: 1993891176, Tehran, Iran.
| | - Majid M Heravi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, PO Box: 1993891176, Tehran, Iran.
| | - Elham Shafiei Toran Poshti
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, PO Box: 1993891176, Tehran, Iran
| |
Collapse
|
7
|
Zhao W, Yang B. Fabrication of magnetic MnFe 2O 4@HL composites with an in situ Fenton-like reaction for enhancing tetracycline degradation. J Colloid Interface Sci 2024; 658:997-1008. [PMID: 38171049 DOI: 10.1016/j.jcis.2023.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024]
Abstract
Novel magnetic MnFe2O4@honey locust-derived carbon (MnFe2O4@HL) composites were synthesized via an in-situ hydrothermal precipitation method, and were characterized as an excellent Fenton-like catalyst for tetracycline (TC) degradation. Results showed that the vast majority of TC was mineralized in hydrogen peroxide (H2O2)/MnFe2O4@HL system after 120 min of reaction time with 92.3% of removal efficiency and the removal of 71.3% of total organic carbon (TOC). Systematic characterization approaches including scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometry (VSM) were introduced to reveal the microstructure and properties of magnetic MnFe2O4@HL composites. Hydroxyl radicals (•OH) were identified as the major reactive oxygen species (ROS) via the quenching experiments and electron spin resonance (ESR) analysis, while superoxide radicals (·O2-) played a negligible role. The dual cycles of both Fe3+/Fe2+ and Mn3+/Mn2+ were significant enhanced through the bimetallic redox effect and the electron transfer effect of the carbon-based functional group, accelerating the generation of •OH. The removal of TC was still up to 79.3% after five reuses of magnetic composites, demonstrating the MnFe2O4@HL with excellent stability and reuse performance. The influence of various experimental control conditions involving initial pH, catalyst and H2O2 dosage, temperature, as well as common anions (Cl-, NO3-, and HCO3-) on the degradation of TC were finally evaluated. This study provides an efficient in-situ generation method of emerging magnetic materials, and systematically reveals its mechanism of homogeneous Fenton-like catalysis, which shows promising applications for the degradation of environmental contaminants.
Collapse
Affiliation(s)
- Weike Zhao
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China
| | - Bo Yang
- China MCC5 Group Corp. Ltd, Chengdu 610023, China.
| |
Collapse
|
8
|
Yılmaz HÇ, Atalay FE, Kaya H, Erdemoğlu S. Sol-gel synthesis of TiO 2 on Co 3O 4-coated sporopollenin exine microcapsules (SECs) and photocatalytic performance of new semiconductor heterojunction material. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78620-78636. [PMID: 35696060 DOI: 10.1007/s11356-022-21357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
In this study, a new approach was developed to prepare mesoporous hybrid TiO2/Co3O4 coated on Juglans sporopollenin exine microcapsules (SECs). TiO2 was synthesized on Co3O4-coated SECs used as substrate, by sol-gel method. The obtained semiconductor/semiconductor hetero-junction hybrid materials were characterized with X-ray diffractometry (XRD), UV-Vis absorption spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), particle size distribution, specific surface area, and zeta potential measurements. Photocatalytic performances of hybrid materials were tested for Reactive Black 5 dye under both UV and visible light. Equilibrium pH of the solution containing 10 mg/L Reactive Black 5 dye and 0.1% wt/v TiO2/Co3O4 was around 4.7. After irradiation in the solar box, more than 98% of the Reactive Black 5 was photocatalytically degraded within 60 min.
Collapse
Affiliation(s)
- Hatice Çağlar Yılmaz
- Department of Chemistry, Faculty of Science and Arts, İnönü University, 44280, Malatya, Turkey
| | - Funda Ersoy Atalay
- Department of Physics, Faculty of Science and Arts, İnönü University, 44280, Malatya, Turkey
| | - Harun Kaya
- Faculty of Engineering and Natural Sciences, Malatya Turgut Özal University, 44280, Malatya, Turkey
| | - Sema Erdemoğlu
- Department of Chemistry, Faculty of Science and Arts, İnönü University, 44280, Malatya, Turkey.
| |
Collapse
|
9
|
Enhanced Catalytic Oxidation of Toluene over Heterostructured CeO2-CuO-Mn3O4 Hollow Nanocomposites. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
10
|
Photocatalytic activity of Co3O4@C enhanced by induction of amorphous cobalt-based MOF. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Hu X, Ding C, Wang Q, Chen H, Jia X, Huang L. Preparation of Co-Ce-O catalysts and its application in auto-thermal reforming of acetic acid. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Rani A, Saravanan P. Heterojunction formation between AgNbO 3 and Co 3O 4 for full solar light utilization with improved charge-carrier separation. Photochem Photobiol Sci 2022; 21:1735-1750. [PMID: 35723863 DOI: 10.1007/s43630-022-00253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
In the present study, the charge-carrier recombination of visible light active perovskite silver niobate (AgNbO3) was reduced by forming heterojunction with Co3O4 through simple impregnation and calcination route. The loading percentage of Co3O4 was varied as 2, 5, and 10 wt.%. The XRD study revealed reduced interlayer spacing in the composite due to the replacement of the bigger Ag+ ions by the smaller Co2+ and Co3+ ions of Co3O4. It was observed that the light harvesting efficiency of the materials was increased with increased loading of Co3O4. The TEM and XPS analysis confirmed the presence of Ag nanoparticles over the perovskite in the composite. The electrochemical analysis revealed enhanced charge-carrier number density and increased charge-carrier lifetime in the composite as a result of the presence of both silver and cobalt ions in the lattice. Further this enhanced charge-carrier separation of the composites was established through photocatalysis of Bisphenol-A under both solar and LED light. Charge-trapping study indicated *O2- and *OH as the major radicals involved and Z-scheme as the predominant charge transfer pathway for generation of these reactive oxygen species.
Collapse
Affiliation(s)
- Ankita Rani
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India
| | - Pichiah Saravanan
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India.
| |
Collapse
|
13
|
Shan C, Zhang X, Ma S, Xia X, Shi Y, Yang J. Preparation and application of bimetallic mixed ligand MOF photocatalytic materials. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Al-Hada NM, Md. Kasmani R, Kasim H, Al-Ghaili AM, Saleh MA, Banoqitah EM, Alhawsawi AM, Baqer AA, Liu J, Xu S, Li Q, Noorazlan AM, Ahmed AAA, Flaifel MH, Paiman S, Nazrin N, Ali Al-Asbahi B, Wang J. The Effect of Precursor Concentration on the Particle Size, Crystal Size, and Optical Energy Gap of Ce xSn 1-xO 2 Nanofabrication. NANOMATERIALS 2021; 11:nano11082143. [PMID: 34443973 PMCID: PMC8401046 DOI: 10.3390/nano11082143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 12/25/2022]
Abstract
In the present work, a thermal treatment technique is applied for the synthesis of CexSn1-xO2 nanoparticles. Using this method has developed understanding of how lower and higher precursor values affect the morphology, structure, and optical properties of CexSn1-xO2 nanoparticles. CexSn1-xO2 nanoparticle synthesis involves a reaction between cerium and tin sources, namely, cerium nitrate hexahydrate and tin (II) chloride dihydrate, respectively, and the capping agent, polyvinylpyrrolidone (PVP). The findings indicate that lower x values yield smaller particle size with a higher energy band gap, while higher x values yield a larger particle size with a smaller energy band gap. Thus, products with lower x values may be suitable for antibacterial activity applications as smaller particles can diffuse through the cell wall faster, while products with higher x values may be suitable for solar cell energy applications as more electrons can be generated at larger particle sizes. The synthesized samples were profiled via a number of methods, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). As revealed by the XRD pattern analysis, the CexSn1-xO2 nanoparticles formed after calcination reflect the cubic fluorite structure and cassiterite-type tetragonal structure of CexSn1-xO2 nanoparticles. Meanwhile, using FT-IR analysis, Ce-O and Sn-O were confirmed as the primary bonds of ready CexSn1-xO2 nanoparticle samples, whilst TEM analysis highlighted that the average particle size was in the range 6-21 nm as the precursor concentration (Ce(NO3)3·6H2O) increased from 0.00 to 1.00. Moreover, the diffuse UV-visible reflectance spectra used to determine the optical band gap based on the Kubelka-Munk equation showed that an increase in x value has caused a decrease in the energy band gap and vice versa.
Collapse
Affiliation(s)
- Naif Mohammed Al-Hada
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (J.L.); (S.X.); (Q.L.)
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Malaysia; (R.M.K.); (M.A.S.)
- Department of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246, Yemen;
- Correspondence: (N.M.A.-H.); (H.K.); (A.M.A.-G.); (J.W.)
| | - Rafiziana Md. Kasmani
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Malaysia; (R.M.K.); (M.A.S.)
| | - Hairoladenan Kasim
- College of Computing & Informatics (CCI), Universiti Tenaga Nasional (UNITEN), Kajang 43000, Malaysia
- Correspondence: (N.M.A.-H.); (H.K.); (A.M.A.-G.); (J.W.)
| | - Abbas M. Al-Ghaili
- Institute of Informatics and Computing in Energy (IICE), Universiti Tenaga Nasional (UNITEN), Kajang 43000, Malaysia
- Correspondence: (N.M.A.-H.); (H.K.); (A.M.A.-G.); (J.W.)
| | - Muneer Aziz Saleh
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Malaysia; (R.M.K.); (M.A.S.)
| | - Essam M. Banoqitah
- Department of Nuclear Engineering, Faculty of Engineering, K. A. CARE Energy Research and Innovation Center, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia; (E.M.B.); (A.M.A.)
| | - Abdulsalam M. Alhawsawi
- Department of Nuclear Engineering, Faculty of Engineering, K. A. CARE Energy Research and Innovation Center, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia; (E.M.B.); (A.M.A.)
- Center for Training & Radiation Prevention, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
| | - Anwar Ali Baqer
- Department of Physics, Faculty of Science for Women, University of Baghdad, Baghdad 10071, Iraq;
| | - Jian Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (J.L.); (S.X.); (Q.L.)
| | - Shicai Xu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (J.L.); (S.X.); (Q.L.)
| | - Qiang Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (J.L.); (S.X.); (Q.L.)
| | - Azlan Muhammad Noorazlan
- Physics Department, Faculty of Science and Mathematics, University Pendidikan Sultan Idris, Tanjong Malim 35900, Malaysia;
| | - Abdullah A. A. Ahmed
- Department of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246, Yemen;
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 20146 Hamburg, Germany
| | - Moayad Husein Flaifel
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
- Basic and Applied Scientific Research Center, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Suriati Paiman
- Department of Physics, Faculty of Science, University Putra Malaysia, Serdang 43400, Malaysia; (S.P.); (N.N.)
| | - Nazirul Nazrin
- Department of Physics, Faculty of Science, University Putra Malaysia, Serdang 43400, Malaysia; (S.P.); (N.N.)
| | - Bandar Ali Al-Asbahi
- Department of Physics & Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Jihua Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (J.L.); (S.X.); (Q.L.)
- Correspondence: (N.M.A.-H.); (H.K.); (A.M.A.-G.); (J.W.)
| |
Collapse
|
15
|
Ullah M, Bai X, Chen J, Lv H, Liu Z, Zhang Y, Wang J, Sun B, Li L, Shi K. Metal-organic framework material derived Co3O4 coupled with graphitic carbon nitride as highly sensitive NO2 gas sensor at room temperature. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125972] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Rare-earth oxides modified Mg-Al layered double oxides for the enhanced adsorption-photocatalytic activity. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125933] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Gulati A, Malik J, Mandeep, Kakkar R. Peanut shell biotemplate to fabricate porous magnetic Co3O4 coral reef and its catalytic properties for p-nitrophenol reduction and oxidative dye degradation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Qi Y, Peng H. One-pot synthesis of La2O3-decorated Mg-Al oxides nanosheets for solar-light driven photocatalytic activity. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Kaplin IY, Lokteva ES, Golubina EV, Lunin VV. Template Synthesis of Porous Ceria-Based Catalysts for Environmental Application. Molecules 2020; 25:E4242. [PMID: 32947806 PMCID: PMC7570565 DOI: 10.3390/molecules25184242] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 01/30/2023] Open
Abstract
Porous oxide materials are widely used in environmental catalysis owing to their outstanding properties such as high specific surface area, enhanced mass transport and diffusion, and accessibility of active sites. Oxides of metals with variable oxidation state such as ceria and double oxides based on ceria also provide high oxygen storage capacity which is important in a huge number of oxidation processes. The outstanding progress in the development of hierarchically organized porous oxide catalysts relates to the use of template synthetic methods. Single and mixed oxides with enhanced porous structure can serve both as supports for the catalysts of different nature and active components for catalytic oxidation of volatile organic compounds, soot particles and other environmentally dangerous components of exhaust gases, in hydrocarbons reforming, water gas shift reaction and photocatalytic transformations. This review highlights the recent progress in synthetic strategies using different types of templates (artificial and biological, hard and soft), including combined ones, in the preparation of single and mixed oxide catalysts based on ceria, and provides examples of their application in the main areas of environmental catalysis.
Collapse
Affiliation(s)
| | - Ekaterina S. Lokteva
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (I.Yu.K.); (E.V.G.); (V.V.L.)
| | | | | |
Collapse
|
20
|
One-pot synthesis of CeO2/Mg-Al layered double oxide nanosheets for efficient visible-light induced photo-reduction of Cr(VI). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Sophia PJ, Balaji D, James Caleb Peters T, Chander DS, Vishwath Rishaban S, Vijaya Shanthi P, Nagavenkatesh KR, Kumar MR. Solar Induced Photocatalytic Degradation of Methylene Blue by CdS/Ag
2
O Nanocomposites. ChemistrySelect 2020. [DOI: 10.1002/slct.202000475] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- P. Joice Sophia
- Centre for Advanced Materials, Aaivalayam-DIRAC Coimbatore 641046 India
| | - D. Balaji
- Nanochemistry Department, Istituto Italiano di Tecnologia 16163 Genova Italy
- Dipartimento di Chimica e Chimica IndustrialeUniversità degli Studi di Genova 16146 Genova Italy
| | | | | | | | - P. Vijaya Shanthi
- Centre for Advanced Materials, Aaivalayam-DIRAC Coimbatore 641046 India
| | | | - M. Rajesh Kumar
- Institute of Natural Science and MathematicsUral Federal University 620002 Yekaterinburg Russia
| |
Collapse
|
22
|
Nawaz A. Composite of natural bamboo (Dendrocalamus strictus) and TiO2: Its photocatalytic potential in the degradation of methylene blue under the direct irradiation of solar light. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04116-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|