1
|
Zang L, Yan J, Pang M, Zhang B, Chen J, Guo P. Enhanced Electrocatalytic Activity of Alloyed Palladium-Lead Nanoparticles toward Electrooxidation of Ethanol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13132-13140. [PMID: 34714658 DOI: 10.1021/acs.langmuir.1c02324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although many researchers have made great efforts to pursue promising high-efficiency electrocatalysts, a formidable challenge remains for designing excellent palladium-based electrocatalysts for commercializing direct liquid fuel cells. This study reports the synthesis of bimetallic PdPb nanoparticles (NPs) via a mixed solution containing cetyl trimethyl ammonium bromide as the capping agent. Alloyed PdPb NPs are formed, where the size of the NPs increases as Pb atoms are introduced gradually. However, Pd3Pb NPs are obtained with the same molar ratio of Pd and Pb in the raw systems. Among all of the as-made NPs, Pd9Pb1 NPs exhibit superior catalytic activity (2620 mA mg-1) toward ethanol electrooxidation, 4.3 times higher than commercial Pd/C catalysts (613 mA mg-1). The overall rate of the EOR for PdPb NPs is determined, demonstrating that the electrocatalytic activity of the PdPb NPs increases at high catalytic temperatures, in high pH environments, and/or at high ethanol concentrations.
Collapse
Affiliation(s)
- Lei Zang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jie Yan
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Mingyuan Pang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Ben Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jianyu Chen
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
2
|
Cao Z, Liu X, Meng X, Cai L, Chen J, Guo P. Synthesis of bimetallic PdSn nanoparticle assembly as highly efficient electrocatalyst for ethanol oxidation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Ge L, Yin J, Yan D, Hong W, Jiao T. Construction of Nanocrystalline Cellulose-Based Composite Fiber Films with Excellent Porosity Performances via an Electrospinning Strategy. ACS OMEGA 2021; 6:4958-4967. [PMID: 33644603 PMCID: PMC7905938 DOI: 10.1021/acsomega.0c06002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/02/2021] [Indexed: 05/24/2023]
Abstract
Cellulose nanocrystals (CNCs) not only have environmental protection characteristics of being lightweight, degradable, green, and renewable but also have some nanocharacteristics of high strength, large specific surface area, and obvious small size effect, so they are often used as a reinforcing agent in various polymers. However, the hydrogen bonding between CNC molecules is relatively strong, and they can easily aggregate and get entangled with each other. In this work, several large-porosity composite nanofiber films, KH550-CNC/waterborne polyurethane (WPU)/poly(vinyl alcohol) (PVAL) with KH550-modified CNCs, are prepared using poly(vinyl alcohol) (PVAL) solution and electrospinning technology. A variety of characterization methods are used to discuss and analyze the nanofiber materials, and the effects of the added amount of CNCs modified with KH550, spinning voltage, curing distance, and advancing speed on the morphology and performance of composite fibers are discussed separately. The results show that when the content of KH550-CNC is 1%, the composite fiber film obtained has the most regular morphology and the best spinnability, which is convenient for the specific application of fiber materials in a later period. In addition, the porosity of the obtained composite fiber film is 62.61%. Therefore, this work provides a theoretical basis and research strategy for the preparation of higher-porosity composite films as well as the development of new textile materials.
Collapse
Affiliation(s)
- Lei Ge
- Pollution
Prevention Biotechnology Laboratory of Hebei Province, School of Environmental
Science and Engineering, Hebei University
of Science and Technology, Shijiazhuang 050018, P. R. China
| | - Juanjuan Yin
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Dawei Yan
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Wei Hong
- College
of Materials Science and Engineering, Liaoning
Technical University, Fuxin 123000, P. R. China
| | - Tifeng Jiao
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|
4
|
Wang R, Li M, Zhou J, Zhang L, Gu J, Wang M, Jiao T. Self-Assembled Black Phosphorus-Based Composite Langmuir-Blodgett Films with an Enhanced Photocurrent Generation Capability and Surface-Enhanced Raman Scattering Properties. ACS OMEGA 2021; 6:4430-4439. [PMID: 33644555 PMCID: PMC7906586 DOI: 10.1021/acsomega.0c05832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/26/2021] [Indexed: 05/14/2023]
Abstract
In this work, Langmuir-Blodgett (LB) composite thin films were successfully prepared using black phosphorus nanosheets (BPNS) and dye molecules. Black phosphorus (BP) was first exfoliated in isopropanol solution to form BPNS, and then, BPNS were modified with 4-azidobenzoic acid (Az-BPNS) to improve their stability. The characterization results showed that the synthesized Az-BPNS-dye LB films have a uniform and ordered structure. In addition, the synthesized Az-BPNS-dye LB films exhibit excellent photoelectrochemical performance, and Az-BPNS-methylene blue (MB) produces higher photocurrent compared to Az-BPNS-Neutral red (NR) films. The current work shows an effective way to prepare functionalized BP-based materials and provide evidence for their application in optoelectronic devices.
Collapse
Affiliation(s)
- Ran Wang
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Min Li
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Jingxin Zhou
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Lexin Zhang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Jianmin Gu
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Mingli Wang
- Key
Laboratory for Microstructural Material Physics of Hebei Province,
School of Science, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Tifeng Jiao
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, P. R. China
- . Phone: 0086-335-8056854
| |
Collapse
|
5
|
Qian C, Wang R, Li M, Li X, Ge B, Bai Z, Jiao T. Facile preparation of self-assembled black phosphorus-based composite LB films as new chemical gas sensors. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125616] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Structural regulation of porous MnO2 nanosheets and their electrocapacitive behavior in aqueous electrolytes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125579] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Hierarchical defective palladium-silver alloy nanosheets for ethanol electrooxidation. J Colloid Interface Sci 2020; 586:200-207. [PMID: 33208247 DOI: 10.1016/j.jcis.2020.10.084] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022]
Abstract
Tuning the chemical composition and surface structure of electrodes is demonstrated as a feasible and effective strategy to tailor advanced catalysts for energy electrocatalysis. In this work, hierarchical palladium-silver alloy nanosheets (PdAg NS) with the thickness ~7 atoms and rich atomic defects are successfully prepared, using the carbon monoxide (CO) confinement approach. The optimized Pd7Ag3 NS/C exhibits 8.8 times higher catalytic peak current density and much better stability toward ethanol electrooxidation than Pd NS/C catalyst. The catalytic enhancement mechanism could be attributed to the synergetic effects among optimized electronic structure of Pd, novel architecture, and rich atomic defects.
Collapse
|
8
|
Li H, Wang H, Yang M, Sun Y, Yin Y, Guo P. Mg-inserted δ-MnO2 nanosheet assembly for enhanced energy storage. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Green synthesis of gold nanoparticles using Sargassum carpophyllum extract and its application in visual detection of melamine. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Yang M, Lao X, Sun J, Ma N, Wang S, Ye W, Guo P. Assembly of Bimetallic PdAg Nanosheets and Their Enhanced Electrocatalytic Activity toward Ethanol Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11094-11101. [PMID: 32838533 DOI: 10.1021/acs.langmuir.0c02102] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The direct ethanol fuel cells in an alkaline medium have a broad vision of applications because of their large energy density, reasonable power density, and environmentally friendly features. Herein, we present a facile one-step method to synthesize PdAg nanosheet assemblies (NSAs) in a mixed solution of N,N-dimethylformamide and water with the addition of molybdenum hexacarbonyl and cetyltrimethylammonium bromide. Pure Pd NSA shows an irregular shape while PdAg NSAs gradually undergo a process from solid assembly to a hollow structure with the Pd/Ag molar ratio changing from 3:1 to 2:1 to 1:1. The formation of alloy nanosheets in the assemblies combined with the introduction of Ag in the Pd catalyst enhances the catalytic activity toward ethanol electrooxidation from 1524 mA mg-1 of pure Pd NSA to 1866 mA mg-1 of PdAg NSA with a Pd/Ag molar ratio of 2:1. On the basis of the experimental data, compared with pure Pd structures, both the nature of a thin nanosheet of PdAg NSAs and the structural changes in the alloy assemblies play key roles in determining the electrocatalytic activity of these Pd-based catalysts.
Collapse
Affiliation(s)
- Min Yang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xianzhuo Lao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jing Sun
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Ning Ma
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Shuqing Wang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Wanneng Ye
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
11
|
Cheng Y, Xue J, Yang M, Li H, Guo P. Bimetallic PdCu Nanoparticles for Electrocatalysis: Multiphase or Homogeneous Alloy? Inorg Chem 2020; 59:10611-10619. [PMID: 32678586 DOI: 10.1021/acs.inorgchem.0c01056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crystal phase structure of bimetallic alloy is an important factor determining the electrocatalytic activity toward oxidation of energy molecules. In this paper, PdCu bimetallic NPs with similar element composition and different crystal phase structural features have been synthesized hydrothermally by adjusting the content of ethylenediaminetetraacetic acid disodium salt (EDTA-2Na). Multiphase PdCu NPs composed of pure Pd and alloy phase are obtained with a low concentration (even as low as zero) of EDTA-2Na in synthetic systems while homogeneous PdCu alloy NPs are formed in the presence of EDTA-2Na with a high concentration. The catalytic activity of ethanol electrooxidation is increased from 3.1 mA·cm-2 of pure Pd NPs, to 3.6 mA·cm-2 of multiphase PdCu NPs, and to 5.0 mA·cm-2 of homogeneous PdCu alloy NPs (about 2360 mA mgPd-1). The surface composition and structural stability of homogeneous PdCu NPs were much less damaged during electrochemical measurements. Based on the experimental data, the formation mechanism of multiphase and homogeneous PdCu NPs and their structure-property relationship have been discussed.
Collapse
Affiliation(s)
- Yuanzhe Cheng
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Jing Xue
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Min Yang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hongliang Li
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
12
|
Facile Fabrication of SrTiO 3@MoS 2 Composite Nanofibers for Excellent Photodetector Application. J CHEM-NY 2020. [DOI: 10.1155/2020/4150439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Molybdenum disulfide (MoS2), as a kind of transition metal dichalcogenide, has been widely studied for its excellent compatibility with most of inorganic nanomaterials. Nevertheless, its microscale and agglomeration limit the performance severely. Therefore, the special structure of V-MoS2 has drawn a lot of interest, which can not only reduce the size of MoS2 nanosheets but also improve the valence electron structure of the materials. In this work, SrTiO3@MoS2 composite nanofibers were synthesized by the simple electrospinning and hydrothermal method, and it was applied as a novel material for photodetector. SEM, TEM, EDX, XRD, I-T curves, and EIS analysis were used to study the structure and properties of the prepared SrTiO3@MoS2 composite nanofibers. Simulating under sunlight at a potential of 1.23 V, the prepared composite materials exhibited a superior photoelectric performance of photocurrent density of 21.4 μA and a resistance of 2.3 Ω. These results indicate that the composite of SrTiO3 nanofiber adhered with V-MoS2 has a stable composite structure, good electrical conductivity, and photoelectric sensitivity and is a suitable material for photodetectors. This work provides new ideas for the preparation of self-assembled materials and their application in photodetectors.
Collapse
|
13
|
Facile preparation of black phosphorus-based rGO-BP-Pd composite hydrogels with enhanced catalytic reduction of 4-nitrophenol performances for wastewater treatment. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113083] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Jiang Y, Guo Y, Zhou Y, Deng S, Hou L, Niu Y, Jiao T. Synergism of Multicomponent Catalysis: One-Dimensional Pt-Rh-Pd Nanochain Catalysts for Efficient Methanol Oxidation. ACS OMEGA 2020; 5:14805-14813. [PMID: 32596618 PMCID: PMC7315591 DOI: 10.1021/acsomega.0c01859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/02/2020] [Indexed: 05/10/2023]
Abstract
Designing Pt-based alloy catalysts with multicomponent composition and a controllable structure is important to improve the utilization efficiency of precious metals and catalytic activity, but it still face a lot of challenges for simple preparation. Herein, we used insulin amyloid fibrils as templates and their own one-dimensional spiral structure to synthesize Pt-Rh-Pd ternary alloy nanochains under mild conditions. The prepared Pt-Rh-Pd alloy nanochains (NCs) have uniform diameter, and the particle size is only 2 nm. This ultrafine structure increases the specific surface area of the catalyst to a certain extent, and the synergistic effect of the three metals improves the catalytic performance. Compared with commercial Pt/C and binary Pt-Rh NCs, the as-presented Pt-Rh-Pd NCs show better methanol oxidation activity ability and stability against CO poisoning. The peak current density of front sweep is 1.48 mA cm-2, which is 1.7 times higher than that of commercial Pt/C (0.89 mA cm-2) and 1.4 times higher than that of the Pt-Rh NCs (1.07 mA cm-2), indicating great application potential as high-performance electrocatalysts in fuel cells.
Collapse
Affiliation(s)
| | | | - Yanyan Zhou
- Hebei Key Laboratory of Applied
Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in
Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Shuolei Deng
- Hebei Key Laboratory of Applied
Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in
Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Li Hou
- Hebei Key Laboratory of Applied
Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in
Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Yunfeng Niu
- Hebei Key Laboratory of Applied
Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in
Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Tifeng Jiao
- Hebei Key Laboratory of Applied
Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in
Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|
15
|
Feng Y, Yin J, Liu S, Wang Y, Li B, Jiao T. Facile Synthesis of Ag/Pd Nanoparticle -Loaded Poly(ethylene imine) Composite Hydrogels with Highly Efficient Catalytic Reduction of 4-Nitrophenol. ACS OMEGA 2020; 5:3725-3733. [PMID: 32118188 PMCID: PMC7045507 DOI: 10.1021/acsomega.9b04408] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/03/2020] [Indexed: 05/17/2023]
Abstract
Poly(ethylene imine) (PEI) has abundant amino groups in a macromolecular chain and can be used as a graft source for metal nanocomposites, which shows excellent ability to form stable complexes with heavy metal ions. In this work, a simple and convenient method was used to make PEI into a stable hydrogel with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxysuccinimide and subsequently coprecipitate with silver nitrate solution or palladium chloride solution to form metal-loaded composite hydrogels. In addition, the characterizations of composite hydrogels were investigated by scanning electron microscopy, specific surface area tests (Brunauer-Emmett-Teller), X-ray photoelectron spectroscopy, and ultraviolet spectroscopy. The properties of composite hydrogels on the catalytic reduction of 4-nitrophenol were studied. The results showed that the composite hydrogels could be easily separated from the water environment, which indicated the large-scale potential application in organic catalytic degradation and wastewater treatment.
Collapse
Affiliation(s)
- Yao Feng
- Hebei
Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy
Metal Deep-Remediation in Water and Resource Reuse, School of Environmental
and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P.
R. China
| | - Juanjuan Yin
- Hebei
Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy
Metal Deep-Remediation in Water and Resource Reuse, School of Environmental
and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Shufeng Liu
- Key
Laboratory of Optic-electric Sensing and Analytical Chemistry for
Life Science, Ministry of Education, College of Chemistry and Molecular
Engineering, Qingdao University of Science
and Technology, 53 Zhengzhou Road, Qingdao 266042, P. R. China
| | - Yuying Wang
- School
of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Bingfan Li
- Shandong
Key Laboratory of Oil & Gas Storage and Transportation Safety, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Tifeng Jiao
- Hebei
Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy
Metal Deep-Remediation in Water and Resource Reuse, School of Environmental
and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P.
R. China
| |
Collapse
|