1
|
Chen L, Zhang Y, Zhang YX, Wang WL, Sun DM, Li PY, Feng XS, Tan Y. Pretreatment and analysis techniques development of TKIs in biological samples for pharmacokinetic studies and therapeutic drug monitoring. J Pharm Anal 2024; 14:100899. [PMID: 38634061 PMCID: PMC11022103 DOI: 10.1016/j.jpha.2023.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 04/19/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have emerged as the first-line small molecule drugs in many cancer therapies, exerting their effects by impeding aberrant cell growth and proliferation through the modulation of tyrosine kinase-mediated signaling pathways. However, there exists a substantial inter-individual variability in the concentrations of certain TKIs and their metabolites, which may render patients with compromised immune function susceptible to diverse infections despite receiving theoretically efficacious anticancer treatments, alongside other potential side effects or adverse reactions. Therefore, an urgent need exists for an up-to-date review concerning the biological matrices relevant to bioanalysis and the sampling methods, clinical pharmacokinetics, and therapeutic drug monitoring of different TKIs. This paper provides a comprehensive overview of the advancements in pretreatment methods, such as protein precipitation (PPT), liquid-liquid extraction (LLE), solid-phase extraction (SPE), micro-SPE (μ-SPE), magnetic SPE (MSPE), and vortex-assisted dispersive SPE (VA-DSPE) achieved since 2017. It also highlights the latest analysis techniques such as newly developed high performance liquid chromatography (HPLC) and high-resolution mass spectrometry (HRMS) methods, capillary electrophoresis (CE), gas chromatography (GC), supercritical fluid chromatography (SFC) procedures, surface plasmon resonance (SPR) assays as well as novel nanoprobes-based biosensing techniques. In addition, a comparison is made between the advantages and disadvantages of different approaches while presenting critical challenges and prospects in pharmacokinetic studies and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Lan Chen
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wei-Lai Wang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - De-Mei Sun
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Peng-Yun Li
- Institute of Pharmacology and Toxicology Institution, National Engineering Research Center for Strategic Drugs, Beijing, 100850, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| |
Collapse
|
2
|
Roshani M, Rezaian-Isfahni A, Lotfalizadeh MH, Khassafi N, Abadi MHJN, Nejati M. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review. Cancer Cell Int 2023; 23:280. [PMID: 37981671 PMCID: PMC10657605 DOI: 10.1186/s12935-023-03115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023] Open
Abstract
Gastrointestinal (GI) cancer is a major health problem worldwide, and current diagnostic and therapeutic approaches are often inadequate. Various metallic nanoparticles (MNPs) have been widely studied for several biomedical applications, including cancer. They may potentially overcome the challenges associated with conventional chemotherapy and significantly impact the overall survival of GI cancer patients. Functionalized MNPs with targeted ligands provide more efficient localization of tumor energy deposition, better solubility and stability, and specific targeting properties. In addition to enhanced therapeutic efficacy, MNPs are also a diagnostic tool for molecular imaging of malignant lesions, enabling non-invasive imaging or detection of tumor-specific or tumor-associated antigens. MNP-based therapeutic systems enable simultaneous stability and solubility of encapsulated drugs and regulate the delivery of therapeutic agents directly to tumor cells, which improves therapeutic efficacy and minimizes drug toxicity and leakage into normal cells. However, metal nanoparticles have been shown to have a cytotoxic effect on cells in vitro. This can be a concern when using metal nanoparticles for cancer treatment, as they may also kill healthy cells in addition to cancer cells. In this review, we provide an overview of the current state of the field, including preparation methods of MNPs, clinical applications, and advances in their use in targeted GI cancer therapy, as well as the advantages and limitations of using metal nanoparticles for the diagnosis and treatment of gastrointestinal cancer such as potential toxicity. We also discuss potential future directions and areas for further research, including the development of novel MNP-based approaches and the optimization of existing approaches.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arya Rezaian-Isfahni
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hassan Jafari Najaf Abadi
- Research Center for Health Technology Assessment and Medical Informatics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Barde N, Solanki P, Shah N, Bardapurkar P. Investigations on structural, magnetic, elastic and thermodynamic properties of lithium ferrite–silica nanocomposites. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Naeimipour B, Moniri E, Vaziri Yazdi A, Safaeijavan R, Faraji H. Green biosynthesis of magnetic iron oxide nanoparticles using Mentha longifolia for imatinib mesylate delivery. IET Nanobiotechnol 2022; 16:225-237. [PMID: 35771160 PMCID: PMC9353862 DOI: 10.1049/nbt2.12090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 05/15/2022] [Accepted: 06/13/2022] [Indexed: 12/27/2022] Open
Abstract
In this work, the rapid, facile, and eco-friendly green process was introduced in the preparation of β-cyclodextrin/magnetic iron oxide nanoparticles by using the aqueous Mentha longifolia extracts of Mentha longifolia. The obtained nanoparticles were characterised by Fourier transform infrared spectroscopy, x-ray powder diffraction, field emission scanning electron microscope, and thermogravimetric analysis. Also, effective factors on the synthesis of magnetic nanocomposites including temperature, concentration of the Mentha longifolia extract, and concentration of FeSO4 solution were optimised by Taguchi design. Moreover, important effective parameters on the adsorption efficiency; such as adsorbent dosage, pH, contact time, and temperature were investigated. The prepared magnetic nanocomposite was applied as a nanocarrier for imatinib mesylate delivery. In vitro studies confirmed imatinib mesylate release over 6 h. The nanocarrier showed pH-dependent imatinib mesylate release with higher drug release at simulated cancer fluid (pH = 5.6) compared to neural fluid (pH = 7.4). Moreover, the sorption isotherms and kinetics for the magnetic nanocomposite were fitted into Langmuir and pseudo-second order models, respectively. Based on the thermodynamic results, the adsorption of imatinib mesylate onto the nanoadsorbent was found to be spontaneous and exothermic.
Collapse
Affiliation(s)
- Bahareh Naeimipour
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elham Moniri
- Department of Chemistry, Varamin (Pishva) Branch, Islamic Azad Universit, Varamin, Iran
| | - Ali Vaziri Yazdi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Raheleh Safaeijavan
- Department of Biochemistry and Biophysics, Varamin (Pishva) Branch, Islamic Azad University, Varamin, Iran
| | - Hossein Faraji
- Department of Mechanical Engineering, University of Birjand, Birjand, Iran
| |
Collapse
|
5
|
Ye RH, Chen JY, Huang DH, Wang YJ, Chen S. Electrochemical Sensor Based on Glassy-Carbon Electrode Modified with Dual-Ligand EC-MOFs Supported on rGO for BPA. BIOSENSORS 2022; 12:bios12060367. [PMID: 35735515 PMCID: PMC9221176 DOI: 10.3390/bios12060367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/08/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The electronic conductive metal-organic frameworks (EC-MOFs) based on a single ligand are not suitable for the accurate detection of bisphenol A (BPA) due to the limitations of their electron-transfer-based sensing mechanism. To overcome this drawback, we developed EC-MOFs with novel dual-ligands, 2,3,6,7,10,11-hexahydroxy-sanya-phenyl (HHTP) and tetrahydroxy 1,4-quinone (THQ), and metal ions. A new class of 2D π-conjugation-based EC-MOFs (M-(HHTP)(THQ)) was synthesized by a self-assemble technique. Its best member (Cu-(HHTP)(THQ)) was selected and combined with reduced graphene (rGO) to form a Cu-(HHTP)(THQ)@rGO composite, which was thoroughly characterized by X-ray diffraction, field scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Cu-(HHTP)(THQ)@rGO was drop-cast onto a glassy carbon electrode (GCE) to obtain a sensor for BPA detection. Cyclic voltammetry and electrochemical impedance tests were used to evaluate the electrode performance. The oxidation current of BPA on the Cu-(HHTP)(THQ)@rGO/GCE was substantially higher than on unmodified GCE, which could be explained by a synergy between Cu-(HHTP)(THQ) (which provided sensing and adsorption) and rGO (which provided fast electron conductivity and high surface area). Cu-(HHTP)(THQ)@rGO/GCE exhibited a linear detection range for 0.05–100 μmol·L−1 of BPA with 3.6 nmol·L−1 (S/N = 3) detection limit. We believe that our novel electrode and BPA sensing method extends the application perspectives of EC-MOFs in the electrocatalysis and sensing fields.
Collapse
Affiliation(s)
- Rui-Hong Ye
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, China; (R.-H.Y.); (Y.-J.W.); (S.C.)
| | - Jin-Yang Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China;
| | - Di-Hui Huang
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, China; (R.-H.Y.); (Y.-J.W.); (S.C.)
- Correspondence:
| | - Yan-Jun Wang
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, China; (R.-H.Y.); (Y.-J.W.); (S.C.)
| | - Sheng Chen
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, China; (R.-H.Y.); (Y.-J.W.); (S.C.)
| |
Collapse
|
6
|
Yousefi M, Zandavar H, Pourmortazavi SM, Rajabi HR, Sajadiasl F, Ganjali MR, Mirsadeghi S. UV and visible-assisted photocatalytic degradation of pharmaceutical pollutants in the presence of rational designed biogenic Fe 3O 4-Au nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12932-8. [PMID: 33641093 DOI: 10.1007/s11356-021-12932-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
In this study, we designed Fe3O4 nanoparticles and heterogeneous Fe3O4-Au nanocomposites with a mean size of 21 and 27 nm that synthesized by Foeniculum vulgare seed extract to photodegrade organic micropollutants under UV and visible light irradiation. The physiochemical characteristics of biogenic nanoparticles/nanocomposite are described by XRD, FTIR, UV-Vis, SEM, EDX, and X-ray elemental mapping. In the presence of nanoparticles and nanocomposites under UV irradiation, the total degradation of contaminants is about 85-90% after 2100 s, while under visible light irradiation, degradation efficiencies are about 70-85% after 4800-s irradiation. Total organic carbon analysis results confirmed photodegradation efficacies. Also, the scavenger's experiments show that hydroxyl radical is the most important specie in the degradation of pollutant model. It can be concluded clearly that Fe3O4 green nanoparticles and Fe3O4-Au green nanocomposite are very simple and effective photocatalyst for degradation of organic pollutants in very short time under illumination.
Collapse
Affiliation(s)
- Mohammad Yousefi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Zandavar
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | | | | | | | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
- Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.
| |
Collapse
|
7
|
Motaghedifard MH, Pourmortazavi SM, Alibolandi M, Mirsadeghi S. Au-modified organic/inorganic MWCNT/Cu/PANI hybrid nanocomposite electrode for electrochemical determination of nitrate ions. Mikrochim Acta 2021; 188:99. [PMID: 33625593 DOI: 10.1007/s00604-021-04754-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/08/2021] [Indexed: 11/28/2022]
Abstract
A new electrochemical sensor is reported for the based on the application of noble bimetal nanoparticles (gold and copper) to polymeric-carbon-modifiers for the reduction of nitrate. This sensor was designed for nitrate ion measurement at the surface of pencil graphite electrode modified by a nanocomposite. The modification was the electrosynthesis of gold nanoparticles on the MWCNT/copper-polyaniline (Cu-PANI) nanocomposite. Physicochemical properties of the synthesized hybrid nanocomposites and their surface performance efficiency are characterized using microscopic, spectroscopic, and electrochemical techniques. At optimized pH, the nitrate peak current (at working potential of 1084 mV versus Ag/AgCl reference electrode) was linear in the concentration range 0.8-30.0 μM with a detection limit of 0.09 μM using differential pulse voltammetry. Modified sensor was successfully implemented to quantify nitrate ions in wastewater resulting from the production line for industrial barium chromate and an example of aqueduct water with appropriate recovery levels. • Aniline was polymerized in phosphoric acid solution using peroxydisulfate as an initiator. • MWCNT@CuNPs@PANNSs@AuNPs nanocomposite on PGE electrode was revealed specific recognition for NO3-. • The electrochemical sensor displayed high selectivity and sensitivity for the detection of NO3-.
Collapse
Affiliation(s)
| | | | - Mahdieh Alibolandi
- Research and Development Center, Pakian Kavir Industrial Group, Kashan, Iran.,Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.
| |
Collapse
|
8
|
Asiabar BM, Karimi MA, Tavallali H, Rahimi-Nasrabadi M. Application of MnFe2O4 and AuNPs modified CPE as a sensitive flunitrazepam electrochemical sensor. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Mohammadnia MS, Naghian E, Ghalkhani M, Nosratzehi F, Adib K, Zahedi MM, Nasrabadi MR, Ahmadi F. Fabrication of a new electrochemical sensor based on screen-printed carbon electrode/amine-functionalized graphene oxide-Cu nanoparticles for Rohypnol direct determination in drink sample. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Electrochemical sensor based on modified methylcellulose by graphene oxide and Fe3O4 nanoparticles: Application in the analysis of uric acid content in urine. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114503] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Mirsadeghi S, Zandavar H, Yousefi M, Rajabi HR, Pourmortazavi SM. Green-photodegradation of model pharmaceutical contaminations over biogenic Fe 3O 4/Au nanocomposite and antimicrobial activity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110831. [PMID: 32507740 DOI: 10.1016/j.jenvman.2020.110831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/14/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
A simple biogenic approach for synthesis of Fe3O4/Au nanocomposite with 31 nm size using aqueous extract of Carum carvi L. seeds has been reported. Phytochemicals of Carum carvi L. seeds extract play three roles, including reducing, capping, and stabilizing agents during the nanocomposite fabrication process. Resulting nanocomposite was characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, differential reflectance spectroscopy, vibrating-sample magnetometer, energy-dispersive X-ray spectroscopy and X-ray elemental mapping. Differential reflectance spectroscopy investigated optical property and absorption spectra display a sharp absorption agreeing to a bandgap of 1.6 eV. Photocatalytic activity of biogenic Fe3O4/Au nanocomposite has been investigated for degradation of imatinib and imipenem drugs under UV and visible light irradiation, due to pharmaceuticals have shown to be recalcitrant in wastewater and conventional wastewater treatments do not remove them, often. Degradation efficiency of imatinib, and imipenem are about 92% and 96% after 1200 s exposure UV light and about 82% and 84% after 3600s exposure visible light in the concentration of 10 ppm drugs. Also, antimicrobial activity of biogenic Fe3O4/Au nanocomposite was investigated on three human pathogens and best result can see in 25 mg/mL of nanocomposite versuse Bacillus subtilis that inhibition zone is about 27 mm. Design of nanocomposites capable of simultaneously removing pharmaceutical and microbial contaminations is important in environments such as hospitals wastewater treatment.
Collapse
Affiliation(s)
- Somayeh Mirsadeghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran.
| | - Hamed Zandavar
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | - Mohammad Yousefi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
12
|
Abdelhameed RM, Darwesh OM, El-Shahat M. Synthesis of arylidene hydrazinylpyrido[2,3- d]pyrimidin-4-ones as potent anti-microbial agents. Heliyon 2020; 6:e04956. [PMID: 32995633 PMCID: PMC7511821 DOI: 10.1016/j.heliyon.2020.e04956] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/15/2020] [Accepted: 09/14/2020] [Indexed: 01/12/2023] Open
Abstract
Combination of arylidene hydrazinyl moiety with pyrido[2,3-d]pyrimidin-4-one skeleton in compounds 7‒26 results in the output of unprecedented anti-microbial agents. Arylidene hydrazinyl based on Pyrido[2,3-d]pyrimidin-4-one analoges 7‒26 prepared by the treatment of [2,3-d]pyrimidin-4-ones 6a,b with various aromatic aldehydes. The antimicrobial action for recently synthesized compounds was considered towards gram positive bacterial species (Staphylococcus aurous ATCC- 47077; Bacillus cereus ATCC-12228), gram negative bacterial species (Escherichia coli ATCC-25922; Salmonella typhi ATCC-15566) and Candida albicans ATCC-10231 as fungal strains. The antimicrobial action expanded by expanding the electron donating group in position 2 and 5 for Pyrido[2,3-d]pyrimidin-4-one core. Derivatives 13, 14, 15, 16 and 12; individually appeared hopeful anti-microbial action towards all strains utilized with inhibition zone higher than that of standard reference drug with lowest MIC.
Collapse
Affiliation(s)
- Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Osama M Darwesh
- Department of Agricultural Microbiology, Agricultural Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mahmoud El-Shahat
- Photochemistry Department, Chemical Industries Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
13
|
Sohouli E, Keihan AH, Shahdost-fard F, Naghian E, Plonska-Brzezinska ME, Rahimi-Nasrabadi M, Ahmadi F. A glassy carbon electrode modified with carbon nanoonions for electrochemical determination of fentanyl. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110684. [DOI: 10.1016/j.msec.2020.110684] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/31/2019] [Accepted: 01/19/2020] [Indexed: 11/25/2022]
|