1
|
Liu H, Chen M, Duan Y, Jiang X, Liao J, Tian M. Few-layered black phosphorus/cucurbit[6]uril as a Pd catalyst support for photo-assisted electrocatalytic ethanol oxidation reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Chen Z, Cao J, Wu X, Cai D, Luo M, Xing S, Wen X, Chen Y, Jin Y, Chen D, Cao Y, Wang L, Xiong X, Yu B. B, N Co-Doping Sequence: An Efficient Electronic Modulation of the Pd/MXene Interface with Enhanced Electrocatalytic Properties for Ethanol Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12223-12233. [PMID: 35235300 DOI: 10.1021/acsami.1c23718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Improving the electrocatalytic properties by regulating the surface electronic structure of supported metals has always been a hot issue in electrocatalysis. Herein, two novel catalysts Pd/B-N-Ti3C2 and Pd/N-B-Ti3C2 are used as the models to explore the effect of the B and N co-doping sequence on the surface electronic structure of metals, together with the electrocatalytic properties of ethanol oxidation reaction. The two catalysts exhibit obviously stratified morphology, and the Pd nanoparticles having the same amount are both uniformly distributed on the surface. However, the electron binding energy of Ti and Pd elements of Pd/B-N-Ti3C2 is smaller than that of Pd/N-B-Ti3C2. By exploring the electrocatalytic properties for EOR, it can be seen that all the electrochemical surface area, maximum peak current density, and antitoxicity of the Pd/B-N-Ti3C2 catalyst are much better than its counterpart. Such different properties of the catalysts can be attributed to the various doping species of B and N introduced by the doping sequence, which significantly affect the surface electronic structure and size distribution of supported metal Pd. Density functional theory calculations demonstrate that different B-doped species can offer sites for the H atom from CH3CH2OH of dehydrogenation in Pd/B-N-Ti3C2, thereby facilitating the progress of the EOR to a favorable pathway. This work provides a new insight into synthesizing the high-performance anode materials for ethanol fuel cells by regulating the supported metal catalyst with multielement doping.
Collapse
Affiliation(s)
- Zhangxin Chen
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Jiajie Cao
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
- School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 Zhejiang, China
| | - Xiaohui Wu
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
- School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 Zhejiang, China
| | - Dongqin Cai
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Minghui Luo
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Shuyu Xing
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Xiuli Wen
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Yongyin Chen
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Yanxian Jin
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Dan Chen
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Yongyong Cao
- College of Biological, Chemical Science and Engineering Jiaxing University, Jiaxing, 314001 Zhejiang, China
| | - Lingmin Wang
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Xianqiang Xiong
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Binbin Yu
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| |
Collapse
|
3
|
One-pot synthesis of rugged PdRu nanosheets as the efficient catalysts for polyalcohol electrooxidation. J Colloid Interface Sci 2021; 601:42-49. [PMID: 34052725 DOI: 10.1016/j.jcis.2021.05.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/17/2022]
Abstract
Recently, intensive attention has been attracted to the two-dimensional metal nanosheets, owing to their excellent electrocatalytic performance for direct alcohol fuel cells (DAFCs). Herein, PdRu nanosheets have been synthesized successfully by a facile one-pot method. The rugged nanosheet structure provided plentiful surface active sites to enhance the electrocatalytic activity. Moreover, benefiting from the synergistic effect and improved electronic structure, PdRu NSs exhibited splendid electrocatalytic performance in ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR). Specifically, the mass activity of PdRu NSs was 1.72 and 3.69 times over those of Pd NSs and Pd/C catalysts in EGOR. Moreover, PdRu NSs displayed the largest mass activity in GOR, 1.48 and 2.47 times as large as Pd NSs and Pd/C catalysts. The results of stability tests demonstrated that the durability of PdRu NSs was the highest among the obtained catalysts. This work plays a directive role on the in-depth engineering on Pd-based catalysts with nanosheet architectures.
Collapse
|