1
|
Lu W, Zhang X, Yin C, Zhao W, Liu S, Rao J, Zhang YX, Liu X. Diatomite@MoS 2 Nanocomposite Layers as Composite Coating Targeting for Mg Alloys Endowed with Properties of Anticorrosion and Antiwear. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8233-8247. [PMID: 38557050 DOI: 10.1021/acs.langmuir.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Molybdenum disulfide (MoS2) demonstrates promising applications in enhancing the corrosion and wear resistance of metals, but the susceptibility of this nanomaterial to agglomeration hinders its overall performance. In this study, the externally assisted corrosion inhibitor sodium molybdate (SM) was successfully constructed in diatomaceous earth (DE) and molybdenum disulfide (MoS2). This not only served as a molybdenum source for MoS2 but also enabled the preparation of DE@MoS2-SM microcapsules, achieving a corrosion inhibitor loading of up to 23.23%. The corrosion testing reveals that the composite coating, when compared to the pure epoxy coating, exhibits an impedance modulus 2 orders of magnitude higher (1.80 × 109 Ω·cm2), offering prolonged protection for magnesium alloys over a 40 day period. Furthermore, a filler content of 3% sustains a coefficient of friction (COF) at 0.55 for an extended duration, indicating commendable stability and wear resistance. The protective performance is ascribed to the synergistic enhancement of corrosion and wear resistance in the coatings, facilitated by the pore structure of DE, the high hardness of MoS2, and the obstructive influence of Na2MoO4. This approach offers a straightforward and efficient means of designing microcapsules for use in corrosive environments, whose application can be extended in industrial fields. In particular, we promote the application of nautical instruments, underwater weapons, and seawater batteries in the shipbuilding industry and marine engineering.
Collapse
Affiliation(s)
- Wei Lu
- Marine Chemical Research Institute Co., LTD, Qingdao 266071, China
| | - Xinfang Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Changqing Yin
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Wei Zhao
- Marine Chemical Research Institute Co., LTD, Qingdao 266071, China
| | - Shupei Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jinsong Rao
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Yu Xin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaoying Liu
- Army Logistics Academy of PLA, Chongqing 401331, China
| |
Collapse
|
2
|
Mohammadkhah S, Ramezanzadeh M, Eivaz Mohammadloo H, Ramezanzadeh B, Ghamsarizade M. Construction of A nano-micro nacre-inspired 2D-MoS2-MOF-glutamate carrier toward designing a high-performance smart epoxy composite. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Mussel-inspired polydopamine and Al2O3 nanoparticles co-modified MoS2 for reinforcing anticorrosion of epoxy coatings. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-022-05052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
ZnPA@ZIF-8 nanoparticles: Synthesis, sustained release properties and anticorrosion performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Wang J, Zhang L, Li C. Superhydrophobic and mechanically robust polysiloxane composite coatings containing modified silica nanoparticles and PS-grafted halloysite nanotubes. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Improved Corrosion Protection of Acrylic Waterborne Coating by Doping with Microencapsulated Corrosion Inhibitors. COATINGS 2021. [DOI: 10.3390/coatings11091134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Herein, a waterborne acrylic coating doped with pH sensitive colophony microcapsules containing corrosion inhibitors was studied on carbon steel plates. The changes in the physical properties of the coatings were studied. The microcapsule coating specimens maintained more noble Ecorr values compared to the control in deionized water and simulated concrete pore solutions with −513 and −531 mVSCE, respectively. Additionally, the microcapsule polarization results for both pH 12.6 and 6.2 electrolyte solutions showed lower icorr values of 1.20 × 10−6 and 3.24 × 10−6 A·cm−2, respectively, compared to the control sample (1.15 × 10−5 and 4.21 × 10−5 A·cm−2). Therefore, the microcapsule coating provided more protection from chloride attack on the substrate as well as the deleterious effects of low pH on carbon steel. The electrochemical impedance spectroscopy analysis corroborated the DC polarization results, showing increased corrosion resistance for the microcapsule coated specimens compared to the control. Moreover, the Rpore and Rct are much higher than the control, indicating the protection of the inhibitors. The Ceff,dl also shows lower values for the microcapsule coating than the control, showing a more protective and less doped double layer.
Collapse
|
7
|
Enhancing the tribological performance of Ti3C2 MXene modified with tetradecylphosphonic acid. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126903] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Dehghani A, Bahlakeh G, Ramezanzadeh B, Hossein Jafari Mofidabadi A, Hossein Mostafatabar A. Benzimidazole loaded β-cyclodextrin as a novel anti-corrosion system; coupled experimental/computational assessments. J Colloid Interface Sci 2021; 603:716-727. [PMID: 34225075 DOI: 10.1016/j.jcis.2021.06.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
HYPOTHESIS Silane (sol-gel)-based coatings have been introduced as an eco-friendly system for reducing the metals' corrosion in NaCl solutions. However, due to the lack of active protection property for this type of coatings, their modification is totally recommended for achieving durable protection properties. The present study introduces Beta-cyclodextrin (β-CD) as a novel/effective organic nano-container for Benzimidazole (BM) encapsulation to obtain reliable active protection property via a controlled-release property. EXPERIMENTS The chemical structure of the β-CD-BM macromolecule was explored by Fourier-transform infrared spectroscopy (FT-IR), X-Ray diffraction (XRD), and Ultraviolet-visible spectroscopy (UV-Vis). Besides, the Electrochemical Impedance Spectroscopy (EIS) and polarization (potentiodynamic) tests were carried out for investigating the inhibition impacts of the constructed containers. The exposed and unexposed samples' surfaces were analyzed by Field Emission Scanning Electron Microscope (FE-SEM), Energy Dispersive Spectroscopy (EDS)/mapping, and Grazing incidence X-ray diffraction (GIXRD) experiments. Also, the EIS test was conducted over the Silane-based composite film (SCF) for analyzing the anti-corrosion performance of the constructed composites. FINDINGS The EIS achievements demonstrated that by the addition of β-CD-BM complexes to the saline solution, the mild steel corrosion was mitigated by about 84%. The EIS results also displayed that the total resistance of the modified composite was enhanced from 5540 Ω.cm2 to 10967 Ω.cm2 and the intact coating provided a total resistance of 80254 Ω.cm2. The dispersion-corrected Density Functional Theory (DFT)-D explorations ascertained the inclusion capacity of benzimidazole inside the β-CD. The Monte Carlo/Molecular Dynamics (MC/MD) calculations strongly affirmed the adsorption of BM and β-CD-BM over the substrate.
Collapse
Affiliation(s)
- Ali Dehghani
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Iran; Department of Surface Coatings and Corrosion, ICST, Tehran, Iran
| | - Ghasem Bahlakeh
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Iran.
| | | | | | | |
Collapse
|
9
|
Abstract
This paper provides a synthetic and comprehensive overview on environmentally friendly anticorrosive polymeric coatings. Firstly, the economic and environmental impact of corrosion is presented to highlight the need of anticorrosive polymeric coatings as a flexible and effective solution to protect a metal. Secondly, the implementation of regulations together with the consumer awareness for environmental considerations and protection of health are the driving force for a progressive but significant change in the sector. Therefore, within the protective organic coatings market, this article provides a review of the most recent developments in environmentally friendly solutions, including bio-based and water-borne epoxy, hyperbranched polyester for low- volatile organic compounds (VOC) coatings, waterborne polyurethane and non-isocyanate polyurethanes (NIPUs), and graphene or bio-based fillers for acrylics. Moreover, this paper outlines new trends such as smart additives, bio-based corrosion inhibitors, and functional antibiocorrosive coatings as superhydrophobics. Finally, industrially relevant applications of environmentally friendly anticorrosive polymeric coatings including solutions for marine and off-shore industries are summarized.
Collapse
|
10
|
Eduok U. Niobia Nanofiber-Reinforced Protective Niobium Oxide/Acrylate Nanocomposite Coatings. ACS OMEGA 2020; 5:30716-30728. [PMID: 33283120 PMCID: PMC7711932 DOI: 10.1021/acsomega.0c04948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
In the present study, the corrosion resistance of a new niobium oxide/acrylate hybrid nanocomposite coating doped with niobia nanofibers is investigated. Nanofibers were initially synthesized from niobium(V) chloride precursor in a novel autoclave approach before fabricating the base coating from a two-step process involving the syntheses of acrylate resin via free radical polymerization and niobium oxide gel from niobium ethoxide via a sol-gel technique. Variants of the synthesized nanocomposite coating were incorporated with varying concentrations of niobia nanofibers before spin-coating on Q235 steel substrates to inhibit corrosive electrolytic ion percolation and further enhance corrosion resistance when treated with chloride-enriched corrosive media. The corrosion resistance of these nanocomposite coatings increased with nanofiber content up to an optimum concentration due to the corrosion-inhibiting and protective effects of niobium barrier layers within these coatings. The presence of the niobia nanofibers also promoted improved surface contact angle and toughened mechanical strengths.
Collapse
Affiliation(s)
- Ubong Eduok
- . Tel: +1 (306) 966 7752. Fax: +1 (306) 966 5427
| |
Collapse
|
11
|
Bao Y, Yan Y, Zhang J, Ma J, Zhang W, Liu C. Effect of the feeding mode of cross-linker and microcapsule on the corrosion resistance and hydrophobicity of composite coatings. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
12
|
Liu X, Clifford A, Zhao Q, Zhitomirsky I. Biomimetic strategies in colloidal-electrochemical deposition of functional materials and composites using chenodeoxycholic acid. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Huang H, Sheng X, Tian Y, Zhang L, Chen Y, Zhang X. Two-Dimensional Nanomaterials for Anticorrosive Polymeric Coatings: A Review. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02876] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Haowei Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China
| | - Xinxin Sheng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuqin Tian
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China
| | - Li Zhang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinya Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|