1
|
Sun S, Yang M, Wang N, He C, Fujita T, Wei Y, Wu H, Wang X. Enhanced adsorption dynamics and thermal stability of radioactive Sr(II) by lamellar Nb-doped sodium vanadosilicate via self-assembly and conditional natroxalate intercalation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134431. [PMID: 38691936 DOI: 10.1016/j.jhazmat.2024.134431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/31/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
To promote the environmentally friendly and sustainable development of nuclear energy, it is imperative to address the treatment of wastewater generated by the nuclear industry. This necessitates the enhancement of fission product reclamation efficiency post-treatment. This study aims to combine defect control and confined self-assembly strategies for the precise design of interlayer spacing (14.6 Å to 15.1 Å), leading to the fabrication of conditional natroxalate-functionalized vanadosilicate, and its potential application in the efficient adsorption and reclamation of 90Sr. Na0.03Natroxalate2.47Si1.44Nb0.08V1.92O5·1.2 H2O (Nb4-NxSiVO), with a layer spacing of 14.9 Å, exhibits the highest Sr(II) adsorption capacity (248.76 mg/g), enabling effective separation with Cs+. The natroxalate embedded within the confined interlayers demonstrates excellent stability, offering rapid (within 10 min) and stable adsorption sites for Sr(II). Furthermore, Nb4-NxSiVO exhibits a wide band gap and exceptional thermal stability before and after adsorption, rendering hard desorption of 90Sr. The findings highlight the potential of Nb4-NxSiVO as a promising adsorbent for rapid and selective purification of 90Sr-containing wastewater and further application in nuclear batteries.
Collapse
Affiliation(s)
- Shuaifei Sun
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Maolin Yang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Nannan Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Chunlin He
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Toyohisa Fujita
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, Heng Yang 421001, PR China
| | - Hanyu Wu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China.
| | - Xinpeng Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
2
|
Saha A, Mishra P, Biswas G, Bhakta S. Greening the pathways: a comprehensive review of sustainable synthesis strategies for silica nanoparticles and their diverse applications. RSC Adv 2024; 14:11197-11216. [PMID: 38590352 PMCID: PMC11000228 DOI: 10.1039/d4ra01047g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Silica nanoparticles (SiNPs) have emerged as a multipurpose solution with wide-ranging applications in various industries such as medicine, agriculture, construction, cosmetics, and food production. In 1961, Stöber introduced a ground-breaking sol-gel method for synthesizing SiNPs, which carried a new era of exploration both in academia and industry, uncovering numerous possibilities for these simple yet multifaceted particles. Inspite of numerous reported literature with wide applicability, the synthesis of these nanoparticles with the desired size and functionalities poses considerable challenges. Over time, researchers have strived to optimize the synthetic route, particularly by developing greener approaches that minimize environmental impact. By reducing hazardous chemicals, energy consumption, and waste generation, these greener synthesis methods have become an important focus in the field. This review aims to provide a comprehensive analysis of the various synthetic approaches available for different types of SiNPs. Starting from the Stöber' method, we analyze other methods as well to synthesis different types of SiNPs including mesoporous, core-shell and functionalized nanoparticles. With increasing concerns with the chemical methods associated for environmental issues, we aim to assist readers in identifying suitable greener synthesis methods tailored to their specific requirements. By highlighting the advancements in reaction time optimization, waste reduction, and environmentally friendly precursors, we offer insights into the latest techniques that contribute to greener and more sustainable SiNPs synthesis. Additionally, we briefly discuss the diverse applications of SiNPs, demonstrating their relevance and potential impact in fields such as medicine, agriculture, and cosmetics. By emphasizing the greener synthesis methods and economical aspects, this review aims to inspire researchers and industry professionals to adopt environmentally conscious practices while harnessing the immense capabilities of SiNPs.
Collapse
Affiliation(s)
- Arighna Saha
- Department of Chemistry, Cooch Behar Panchanan Barma University Cooch Behar 736101 West Bengal India
- Cooch Behar College Cooch Behar 736101 West Bengal India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University Cooch Behar 736101 West Bengal India
| | | |
Collapse
|
3
|
Nakashima Y, Katsui H, Kishikawa N, Kawase S, Ohji T, Fukushima M. Solvent effects on morphologies of hollow silica nanoparticles prepared by poly-acrylic acid template method. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
El-Maghrabi N, El-Borady OM, Hosny M, Fawzy M. Catalytic and Medical Potential of a Phyto-Functionalized Reduced Graphene Oxide-Gold Nanocomposite Using Willow-Leaved Knotgrass. ACS OMEGA 2021; 6:34954-34966. [PMID: 34963977 PMCID: PMC8697594 DOI: 10.1021/acsomega.1c05596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 05/02/2023]
Abstract
In the current study, a simple, environmentally friendly, and cost-effective reduced graphene oxide-gold nanoparticle (rGO-AuNP) nanocomposite was successfully phytosynthesized using the aqueous leaf extract of a common weed found on the Nile banks, Persicaria salicifolia, for the first time. The phytosynthesis of rGO-AuNPs was first confirmed via the color transformation from brown to black as well as throughvarious techniques such as transmission electron microscopy (TEM) and Raman spectroscopy. Two UV-vis peaks at 275 and 530 nm were observed for the nanocomposite with a typical particle size of mostly spherical AuNPs of 15-20 nm. However, other shapes were occasionally detected including rods, triangles, and rhomboids. Existing phytoconstituents such as flavonoids and glycosides in the plant extract were suggested to be responsible for the phytosynthesis of rGO-AuNPs. The excellent catalytic efficacy of rGO-AuNPs against MB degradation was confirmed, and a high antibacterial efficiency against Escherichia coli and Klebsiella pneumonia was also confirmed. Promising antioxidant performance of rGO-AuNPs was also proved. Furthermore, it was concluded that rGO-AuNPs acquired higher efficiency than AuNPs synthesized from the same plant extract in all of the studied applications.
Collapse
Affiliation(s)
- Nourhan El-Maghrabi
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Ola M. El-Borady
- Institute
of Nanoscience and Nanotechnology, Kafrelsheikh
University, Kafrelsheikh 33516, Egypt
| | - Mohamed Hosny
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
- ,
| | - Manal Fawzy
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
- National
Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, 101 Kasr Al Aini Street, Cairo 33516, Egypt
| |
Collapse
|
5
|
Li H, Chen X, Shen D, Wu F, Pleixats R, Pan J. Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications. NANOSCALE 2021; 13:15998-16016. [PMID: 34546275 DOI: 10.1039/d1nr04048k] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotechnology is rapidly sweeping through all the vital fields of science and technology such as electronics, aerospace, defense, medicine, and catalysis. It involves the design, synthesis, characterization, and applications of materials and devices on the nanometer scale. At the nanoscale, physical and chemical properties differ from the properties of the individual atoms and molecules of bulk matter. In particular, the design and development of silica nanomaterials have captivated the attention of several researchers worldwide. The applications of hybrid silicas are still limited by the lack of control on the morphology and particle size. The ability to control both the size and morphology of the materials and to obtain nano-sized silica particles has broadened the spectrum of applications of mesoporous organosilicas and/or has improved their performances. On the other hand, adsorption is a widely used technique for the separation and removal of pollutants (metal ions, dyes, organics,...) from wastewater. Silica nanoparticles have specific advantages over other materials for adsorption applications due to their unique structural characteristics: a stable structure, a high specific surface area, an adjustable pore structure, the presence of silanol groups on the surface which allow easy modification, less environmental harm, simple synthesis, low cost, etc. Silica nanoparticles are potential adsorbents for pollutants. We present herein an overview of the different types of silica nanoparticles going from the definitions to properties, synthetic approaches and the mention of potential applications. We focus mainly on the recent advances in the adsorption of different target substances (metal ions, dyes and other organics).
Collapse
Affiliation(s)
- Hao Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
- Anhui Laboratory of Molecules-Based Materials, College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241002, Anhui, China
| | - Xueping Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Danqing Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Fan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain.
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
6
|
Hosny M, Fawzy M, Abdelfatah AM, Fawzy EE, Eltaweil AS. Comparative study on the potentialities of two halophytic species in the green synthesis of gold nanoparticles and their anticancer, antioxidant and catalytic efficiencies. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Bueno V, Ghoshal S. Self-Assembled Surfactant-Templated Synthesis of Porous Hollow Silica Nanoparticles: Mechanism of Formation and Feasibility of Post-Synthesis Nanoencapsulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14633-14643. [PMID: 33226821 DOI: 10.1021/acs.langmuir.0c02501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
SiO2 is bioinert and highly functionalizable, thus making it a very attractive material for nanotechnology applications such as drug delivery and nanoencapsulation of pesticides. Herein, we synthesized porous hollow SiO2 nanoparticles (PHSNs) by using cetyltrimethylammonium bromide (CTAB) and Pluronic P123 as the structure-directing agents. The porosity and hollowness of the SiO2 structure allow for the protective and high-density loading of molecules of interest inside the nanoshell. We demonstrate here that loading can be achieved post-synthesis through the pores of the PHSNs. The PHSNs are monodisperse with a mean diameter of 258 nm and a specific surface area of 287 m2 g-1. The mechanism of formation of the PHSNs was investigated using 1-D and 2-D solid-state nuclear magnetic resonance (SS-NMR) and Fourier-transform infrared spectroscopy (FTIR). The data suggest that CTAB and Pluronic P123 interact, forming a hydrophobic spherical hollow cage that serves as a template for the porous hollow structure. After synthesis, the surfactants were removed by calcination at 550 °C and the PHSNs were added to an Fe3+ solution followed by addition of the reductant NaBH4 to the suspension, which led to the formation of Fe(0) NPs both on the PHSNs and inside the hollow shell, as confirmed by transmission electron microscopy imaging. The imaging of the formation of Fe(0) NPs inside the hollow shell provides direct evidence of transport of solute molecules across the shell and their reactions within the PHSNs, making it a versatile nanocarrier and nanoreactor.
Collapse
Affiliation(s)
- Vinicius Bueno
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| |
Collapse
|