1
|
Subramanian H, Santhaseelan H, Dinakaran VT, Devendiran V, Rathinam AJ, Mahalingam A, Ramachandran SK, Muthukumarasamy A, Muthukumar K, Mathimani T. Hydrothermal synthesis of spindle structure copper ferrite-graphene oxide nanocomposites for enhanced photocatalytic dye degradation and in-vitro antibacterial activity. ENVIRONMENTAL RESEARCH 2023; 231:116095. [PMID: 37182825 DOI: 10.1016/j.envres.2023.116095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
In this study, a one-step hydrothermal approach was used to make pure magnetic copper ferrite (CuFe2O4) and copper ferrite-graphene oxide (CuFe2O4-rGO) nanocomposites (NCs) and spinel structure CuFe2O4 with a single phase of tetragonal CuFe2O4-rGO-NCs was confirmed by the XRD. Then, characterization of CuFe2O4-rGO-NCs was done using ng Raman spectroscopy, FT-IR, TGA-DTA, EDS, SEM, and TEM. The synthesized NCs was exposed to UV light to evaluate its photocatalytic activity for the degradation of methylene blue (MB) and rhodamine B (RhB) with CuFe2O4 and CuFe2O4-rGO-NCs, respectively. The catalyst CuFe2O4-rGO-NCs provided higher degradation of MB (94%) than for RhB (86%) under UV light irradiation compared to CuFe2O4. Further, the antibacterial activities of CuFe2O4-NPs and CuFe2O4-rGO-NCs were tested against Gram-negative and -positive bacterial pathogens such as Vibrio cholera (V. cholera); Escherichia coli (E. coli); Pseudomonas aeruginosa (P. aeruginosa); Bacillus subtilis (B. subtilis); Staphylococcus aureus (S. aureus); and Staphylococcus epidermidis (S. epidermidis) by well diffusion method. At 100 μg/mL concentrations of CuFe2O4-rGO-NCs, maximal growth inhibition was shown against E. coli (18 mm) and minimum growth inhibition against S. epidermidis (12 mm). This study suggests that CuFe2O4-rGO-NCs as a high-efficacy antibacterial material and plays an important role in exhibiting higher sensitivity depending on concentrations. The results encourage that the synthesized CuFe2O4-rGO-NCs can be used as a promising material for the antibacterial activity and also for dye degradation in the water/wastewater treatment plants.
Collapse
Affiliation(s)
- Harinee Subramanian
- Department of Physics, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Henciya Santhaseelan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | | | - Velmurugan Devendiran
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arthur James Rathinam
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Ashok Mahalingam
- Department of Physics, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Sathish Kumar Ramachandran
- Department of Biomaterials, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, Tamil Nadu, India
| | - Arulmozhi Muthukumarasamy
- Department of Petrochemical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Krishnan Muthukumar
- Department of Petrochemical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India.
| |
Collapse
|
2
|
Synthesis of Bimetallic BiPO 4/ZnO Nanocomposite: Enhanced Photocatalytic Dye Degradation and Antibacterial Applications. Int J Mol Sci 2023; 24:ijms24031947. [PMID: 36768271 PMCID: PMC9916082 DOI: 10.3390/ijms24031947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Multidrug-resistant strains (MDRs) are becoming a major concern in a variety of settings, including water treatment and the medical industry. Well-dispersed catalysts such as BiPO4, ZnO nanoparticles (NPs), and different ratios of BiPO4/ZnO nanocomposites (NCs) were synthesized through hydrothermal treatments. The morphological behavior of the prepared catalysts was characterized using XRD, Raman spectra, PL, UV-Vis diffuse reflectance spectroscopy (UV-DRS), SEM, EDX, and Fe-SEM. MDRs were isolated and identified by the 16s rDNA technique as belonging to B. flexus, B. filamentosus, P. stutzeri, and A. baumannii. The antibacterial activity against MDRs and the photocatalytic methylene blue (MB) dye degradation activity of the synthesized NPs and NCs were studied. The results demonstrate that the prepared BiPO4/ZnO-NCs (B1Z4-75:300; NCs-4) caused a maximum growth inhibition of 20 mm against A. baumannii and a minimum growth inhibition of 12 mm against B. filamentosus at 80 μg mL-1 concentrations of the NPs and NCs. Thus, NCs-4 might be a suitable alternative to further explore and develop as an antibacterial agent. The obtained results statistically justified the data (p ≤ 0.05) via one-way analysis of variance (ANOVA). According to the results of the antibacterial and photocatalytic study, we selected the best bimetallic NCs-4 for the photoexcited antibacterial effect of MDRs, including Gram ve+ and Gram ve- strains, via UV light irradiation. The flower-like NCs-4 composites showed more effectiveness than those of BiPO4, ZnO, and other ratios of NCs. The results encourage the development of flower-like NCs-4 to enhance the photocatalytic antibacterial technique for water purification.
Collapse
|
3
|
Tian K, Wu L, Yang B, Chai H, Gao L, Wang M, Jin J. Anchored lithium-rich manganese nanoparticles boosting Nd-BiVO4 photoanode for efficient solar-driven water splitting. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Li Y, Zhong J, Li J, Huang S, Zhang S, Yang H, Ma L. Enhanced visible light-driven photocatalytic destruction of decontaminants over Bi2O3/BiVO4 heterojunctions with rich oxygen vacancies. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Orimolade BO, Arotiba OA. Enhanced photoelectrocatalytic degradation of diclofenac sodium using a system of Ag-BiVO 4/BiOI anode and Ag-BiOI cathode. Sci Rep 2022; 12:4214. [PMID: 35273333 PMCID: PMC8913733 DOI: 10.1038/s41598-022-08213-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/28/2022] [Indexed: 01/20/2023] Open
Abstract
We report the photoelectrocatalysis of diclofenac sodium using a reactor consisting of Ag-BiVO4/BiOI anode and Ag-BiOI cathode. The electrodes were prepared through electrodeposition on FTO glass and modified with Ag nanoparticles through photodeposition. The structural and morphological studies were carried out using XRD, SEM, and EDS which confirmed the successful preparation of the materials. The optical properties as observed with UV-DRS revealed that the electrodes were visible light active and incorporation of metallic Ag particles on the surface increased the absorption in the visible light region. Presence of p-n heterojunction in the anode led to decrease in the spontaneous recombination of photoexcited electron-hole pairs as seen in the photocurrent response. The results from photoelectrocatalytic degradation experiments revealed that replacing platinum sheet with Ag-BiOI as counter electrode resulted in higher (92%) and faster removal of diclofenac sodium as evident in the values of apparent rate constants. The reaction mechanism further revealed that efficiently separated photogenerated holes played a major role in the degradation of the pharmaceutical. The prepared electrodes showed good stability and impressive reusability. The reports from this study revealed that the dual photoelectrodes system has a great potential in treating pharmaceutical polluted wastewater using visible light irradiation.
Collapse
Affiliation(s)
- Benjamin O Orimolade
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg, South Africa.
| |
Collapse
|
6
|
Ma M, E L, Zhao D, Xin Y, Wu X, Meng Y, Liu Z. The p-n heterojunction of BiVO4/Cu2O was decorated by plasma Ag NPs for efficient photoelectrochemical degradation of Rhodamine B. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127834] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Tong Y, Zhao S, Kang J, Shen J, Chen Z, Wang B, Bi L, Deng J. Preparation of small-sized BiVO4 particles with improved photocatalytic performance and its photocatalytic degradation of doxycycline in water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|