1
|
Zhang J, Pei X, Liu Y, Ke X, Peng Y, Weng Y, Zhang Q, Chen J. Combining Chitosan, Stearic Acid, and (Cu-, Zn-) MOFs to Prepare Robust Superhydrophobic Coatings with Biomedical Multifunctionalities. Adv Healthc Mater 2023; 12:e2300746. [PMID: 37632326 DOI: 10.1002/adhm.202300746] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/14/2023] [Indexed: 08/27/2023]
Abstract
There is an urgent need to develop a series of multifunctional materials with good biocompatibility, high mechanical strength, hemostatic properties, antiadhesion, and anti-infection for applications in wound care. However, successfully developing multifunctional materials is challenging. In this study, two superhydrophobic composite coatings with good biocompatibility, high mechanical strength, strong antifouling and blood repellency, fast hemostasis, and good antibacterial activity are prepared on cotton fabric surface by simple, green, and low-cost one-step dip-coating technology. The results discussed in the manuscript reveals that the two superhydrophobic composite coatings can maintain good mechanical stability, strong water repellency, and durability under various types of mechanical damage, high-temperature treatment, and long-term strong light irradiation. The coatings also exhibit good repellency to various solid pollutants, highly viscous liquid pollutants, and blood. In vitro and in vivo hemostatic experiments show that both composite coatings have good hemostatic and anticlot adhesion properties. More importantly, this superhydrophobic coating prevents bacterial adhesion and growth and released Cu2+ and Zn2+ ions and chitosan to achieve bactericidal properties, thereby protecting injured skin from bacterial infection. The two superhydrophobic coatings enhance the antifouling, antiadhesion, hemostatic, and antibacterial functions of blood-repellent dressings and therefore have broad application prospects in medical and textile fields.
Collapse
Affiliation(s)
- Jianwen Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xinyu Pei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yihan Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xianlan Ke
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Ya Peng
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan, 610039, China
| | - Yajun Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Qinyong Zhang
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan, 610039, China
| | - Junying Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
2
|
Kao LH, Lin WC, Huang CW, Tsai PS. Fabrication of Robust and Effective Oil/Water Separating Superhydrophobic Textile Coatings. MEMBRANES 2023; 13:401. [PMID: 37103828 PMCID: PMC10146041 DOI: 10.3390/membranes13040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
A superhydrophobic (SH) surface is typically constructed by combining a low-surface-energy substance and a high-roughness microstructure. Although these surfaces have attracted considerable attention for their potential applications in oil/water separation, self-cleaning, and anti-icing devices, fabricating an environmentally friendly superhydrophobic surface that is durable, highly transparent, and mechanically robust is still challenging. Herein, we report a facile painting method to fabricate a new micro/nanostructure containing ethylenediaminetetraacetic acid/poly(dimethylsiloxane)/fluorinated SiO2 (EDTA/PDMS/F-SiO2) coatings on the surface of a textile with two different sizes of SiO2 particles, which have high transmittance (>90%) and mechanical robustness. The different-sized SiO2 particles were employed to construct the rough micro/nanostructure, fluorinated alkyl silanes were employed as low-surface-energy materials, PDMS was used for its heat-durability and wear resistance, and ETDA was used to strengthen the adhesion between the coating and textile. The obtained surfaces showed excellent water repellency, with a water contact angle (WCA) greater than 175° and a sliding angle (SA) of 4°. Furthermore, the coating retained excellent durability and remarkable superhydrophobicity for oil/water separation, abrasion resistance, ultraviolet (UV) light irradiation stability, chemical stability, self-cleaning, and antifouling under various harsh environments.
Collapse
Affiliation(s)
- Li-Heng Kao
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Wei-Chen Lin
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Chao-Wei Huang
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
| | - Ping-Szu Tsai
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Zhang J, Pei X, Huang J, Ke X, Xu C, Zhao W, Li L, Weng Y, Chen J. Construction of Hierarchical Micro/Nanostructured ZnO/Cu-ZnMOFs@SA Superhydrophobic Composite Coatings with Excellent Multifunctionality of Anticorrosion, Blood-Repelling, and Antimicrobial Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:265-280. [PMID: 36537551 DOI: 10.1021/acsami.2c15102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Naked medical devices are often damaged by blood, bacteria, and other extreme environmental conditions (heat, humidity, acid, alkali, salts, and others), causing device failure and increasing difficulty for the operator. They can also cause inflammation and coagulation resulting in severe complications and even death. In this work, the superhydrophobic ZnO/copper-zinc metal-organic frameworks@stearic acid (ZnO/Cu-ZnMOFs@SA) composite coatings with hierarchical micro/nanostructures were fabricated on Zn substrates via a one-step hydrothermal method. The effects of hierarchical micro/nanostructures on surface wettability, physicochemical stability, and biological properties have been studied in this manuscript. The structure not only provided the coatings with robust waterproofing, abrasive resistance, durability, and thermal and light irradiation stability but also successfully recovered their superhydrophobicity by remodifying the surface with SA, showing excellent repeatability. In addition, the coating demonstrates excellent corrosion resistance and self-cleaning ability and rejects various solid and liquid contaminants. The superhydrophobic ZnO/Cu-ZnMOFs@SA composite coatings also exhibited excellent antibacterial and thrombosis resistance. The findings indicated that the superhydrophobic composite coatings have a strong potential for application in medical instruments for exhibiting multifunctional properties in various extreme environments.
Collapse
Affiliation(s)
- Jianwen Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| | - Xinyu Pei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| | - Jinquan Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| | - Xianlan Ke
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| | - Cong Xu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| | - Wei Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| | - Li Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| | - Yajun Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| | - Junying Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| |
Collapse
|
4
|
An K, Sui Y, Wang Y, Qing Y, Long C, Liu X, Shang Y, Liu C. Synergistic control of wetting resistance and corrosion inhibition by cerium to enhance corrosion resistance of superhydrophobic coating. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Huang Y, Zhao Z, Liu H, Zou X, Wang J. Two combination strategies of coordinated silicon elastomer and modified nano-silica to fabricate self-healing hybrid coating@fabrics with high oil-water separation capabilities. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Yang J, He T, Li X, Wang R, Wang S, Zhao Y, Wang H. Rapid dipping preparation of superhydrophobic TiO2 cotton fabric for multifunctional highly efficient oil-water separation and photocatalytic degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
An K, Zhang X, Qing Y, Sui Y, Long C, Yang Z, Wang L, Liu C. One-step fabrication of robust superhydrophobic cerium-based nickel foam for oil-water separation and photocatalytic degradation. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Facile preparation of superhydrophobic conductive textiles and the application of real-time sensor of joint motion sensor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Niu H, Qiang Z, Ren J. Durable, magnetic-responsive melamine sponge composite for high efficiency, in situoil-water separation. NANOTECHNOLOGY 2021; 32:275705. [PMID: 33725679 DOI: 10.1088/1361-6528/abef2e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/16/2021] [Indexed: 05/25/2023]
Abstract
The development of durable and high-performance absorbents forin situoil-water separation is of critical importance for addressing severe water pollution in daily life as well as for solving accidental large-scale oil spillages. Herein, we demonstrate a simple and scalable approach to fabricate magnetic-responsive superhydrophobic melamine sponges byin situdeposition of PDA coatings and Fe3O4nanoparticles, followed by surface silanization with low surface energy 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PTOS) layer. The prepared melamine sponge composite (PTOS-Fe3O4@PDA/MF) not only exhibits a very high water contact angle of 165 ± 1.5° and an excellent ability to uptake a variety of oils and organic solvents (e.g. up to 141.1 g/g for chloroform), but also shows robust durability and superior recyclability. The PTOS-Fe3O4@PDA/MF sponge can also efficiently separate oils (or organic solvents) and water, as demonstrated by different model systems including immiscible oil-water solution mixture and miscible water-oil (W/O) emulsion (stabilized by surfactants). Furthermore, the PTOS-Fe3O4@PDA/MF sponge is able toin siturecover organics from water using a peristaltic pump, which gives it significant advantages over other traditional batch processes for oil-water separation. We believe that the PTOS-Fe3O4@PDA/MF sponge provides a very promising material solution to address oil-water separation, especially for the large-scale problems that have been long-time challenges with conventional sorption methods.
Collapse
Affiliation(s)
- Haifeng Niu
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, United States of America
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| |
Collapse
|
10
|
Luo Y, Deng S, Li Z, Cao L, He Y, Chen Y, Jin T. Effect of CS2/NaOH activation on the hydrophobic durability of cotton filter fabric modified via ARGET-ATRP. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|