1
|
Li H, Lin Z, Chen Z, Cui Z, Lei L, Song B. Wormlike micellar solutions formed by an anionic surfactant and a cationic surfactant with two head groups. SOFT MATTER 2024; 20:978-984. [PMID: 38193854 DOI: 10.1039/d3sm01416a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Innovation in the molecular structure of surfactants is important for the preparation of soft materials with novel properties. In this study, we synthesized a cationic surfactant, N1,N1,N1,N1,N3,N3,N3-pentamethyl-N3-(3-stearamidopropyl)propane-1,3-diammonium bromide, hereafter referred to as C18-DQA. Unlike conventional cationic surfactants, C18-DQA contains two quaternary ammonium head groups and a long-saturated alkyl chain equal to a chain length of 21 carbon atoms. C18-DQA exhibits a low Krafft point of ∼0 °C and a water solubility >1000 mM at 25 °C. The critical micelle concentration (cmc) of C18-DQA was determined to be 0.59 mM using the Nile red method. C18-DQA was mixed with sodium laurate (SL) at different molar ratios to produce transparent solutions with excellent viscoelasticity over a wide concentration range. The 1 : 1.5 molar ratio C18-DQA/SL mixed solutions exhibited gel-like behavior for a total surfactant concentration of 2.88 wt% (75 mM). The solution with a total surfactant concentration of 300 mM (120 mM C18-DQA and 180 mM SL) achieved a maximum zero-shear viscosity (η0) of 4224 Pa s. Cryogenic transmission electron microscopy analysis revealed the formation of extremely long wormlike micelles, with a cross-sectional diameter of 5 nm and contour length >3 μm, in the mixed solutions. C18-DQA and SL molecules were drawn close by electrostatic attractions, leading to a suitable molecular geometry for the extensive growth of wormlike micelles. This work will act as an important reference for the future preparation of highly viscoelastic solutions by mixing cationic and anionic surfactants. The proposed system is also expected to have potential applications in cosmetic formulations, home care products, and oilfield fracturing fluids.
Collapse
Affiliation(s)
- Hongye Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Zhengrong Lin
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Zhao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Lan Lei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Binglei Song
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| |
Collapse
|
2
|
Zbonikowski R, Mente P, Bończak B, Paczesny J. Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:855. [PMID: 36903733 PMCID: PMC10005801 DOI: 10.3390/nano13050855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional and pseudo-2D systems come in various forms. Membranes separating protocells from the environment were necessary for life to occur. Later, compartmentalization allowed for the development of more complex cellular structures. Nowadays, 2D materials (e.g., graphene, molybdenum disulfide) are revolutionizing the smart materials industry. Surface engineering allows for novel functionalities, as only a limited number of bulk materials have the desired surface properties. This is realized via physical treatment (e.g., plasma treatment, rubbing), chemical modifications, thin film deposition (using both chemical and physical methods), doping and formulation of composites, or coating. However, artificial systems are usually static. Nature creates dynamic and responsive structures, which facilitates the formation of complex systems. The challenge of nanotechnology, physical chemistry, and materials science is to develop artificial adaptive systems. Dynamic 2D and pseudo-2D designs are needed for future developments of life-like materials and networked chemical systems in which the sequences of the stimuli would control the consecutive stages of the given process. This is crucial to achieving versatility, improved performance, energy efficiency, and sustainability. Here, we review the advancements in studies on adaptive, responsive, dynamic, and out-of-equilibrium 2D and pseudo-2D systems composed of molecules, polymers, and nano/microparticles.
Collapse
Affiliation(s)
| | | | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
3
|
Molecular dynamics simulations and quantitative calculations on photo-responsive behavior of wormlike micelles constructed by gemini surfactant 12–3-12·2Br− and cinnamates with different ortho-substituents. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Navarro-Barreda D, Angulo-Pachón CA, Galindo F, Miravet JF. Photoreversible formation of nanotubes in water from an amphiphilic azobenzene derivative. Chem Commun (Camb) 2021; 57:11545-11548. [PMID: 34664569 DOI: 10.1039/d1cc04319f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An anionic azobenzene-appended derivative of L-ValylGlycine self-assembles into nanotubes in water. Irradiation with 365 nm light provokes trans-cis isomerization of the azobenzene unit and subsequent tube disassembly. Thermal or photoinduced (457 nm light) recovery of the trans isomer restores the nanotubes.
Collapse
Affiliation(s)
- Diego Navarro-Barreda
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicent Sos Baynat s/n, Castellón, 12071, Spain.
| | - César A Angulo-Pachón
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicent Sos Baynat s/n, Castellón, 12071, Spain.
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicent Sos Baynat s/n, Castellón, 12071, Spain.
| | - Juan F Miravet
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicent Sos Baynat s/n, Castellón, 12071, Spain.
| |
Collapse
|
5
|
Liu W, Ye Z, Chen Q, Huang X, Shang Y, Liu H, Meng H, He Y, Dong Y. Effect of the Substituent Position on the Phase Behavior and Photoresponsive Dynamic Behavior of Mixed Systems of a Gemini Surfactant and trans-Methoxy Sodium Cinnamates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9518-9531. [PMID: 34333982 DOI: 10.1021/acs.langmuir.1c01372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mixed systems of the Gemini cationic surfactant trimethylene-1,3-bis (dodecyldimethylammonium bromide) (12-3-12·2Br-) and the photosensitive additives trans-methoxy sodium cinnamates with different substituent positions (trans-ortho-methoxy cinnamate, trans-OMCA; trans-meta-methoxy cinnamate, trans-MMCA; and trans-para-methoxy cinnamate, trans-PMCA) were selected for investigating the effects of the substituting position of methoxy on the system phase diagram and UV light-responsive behavior of the wormlike micelles. The differences in phase behaviors of the selected systems were analyzed by calculating the potential distribution, molecular volume, and free energy of solvation of cinnamates and the binding energies between photosensitive additives and the surfactant. The photoresponsive behaviors of wormlike micelle solutions formed in the selected systems were studied by the rheological method and UV-vis and H nuclear magnetic resonance (1H NMR) spectroscopy; the kinetics of photoisomerization of trans-OMCA, trans-MMCA, and trans-PMCA were studied by first-order derivative spectrophotometry. The results reveal that the methoxy substituent position has a great influence on the phase behavior and photosensitivity of the studied systems. In addition, the photoisomerization of the studied cinnamates follows the first-order opposite reaction laws; the different reaction rates play the decisive role in the photosensitivity of the wormlike micelles. This paper would afford a deeper understanding of the UV light-responsive mechanism at the molecular level and provide essential guidance in preparing smart materials with adjustable light sensitivity.
Collapse
Affiliation(s)
- Wenxiu Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qizhou Chen
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiangrong Huang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hong Meng
- Key Laboratory of Cosmetic, China National Light Industry, School of Science, Beijing Technology and Business University, Beijing 100048, China
| | - Yifan He
- Key Laboratory of Cosmetic, China National Light Industry, School of Science, Beijing Technology and Business University, Beijing 100048, China
| | - Yinmao Dong
- Key Laboratory of Cosmetic, China National Light Industry, School of Science, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
6
|
UV-responsive micellar systems and aqueous two-phase systems based on cationic ester-containing gemini surfactant and sodium trans-ortho-methoxycinnamate. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|