1
|
McKinnon Z, Khadra I, Halbert GW, Batchelor HK. Characterisation of colloidal structures and their solubilising potential for BCS class II drugs in fasted state simulated intestinal fluid. Int J Pharm 2024; 665:124733. [PMID: 39317247 DOI: 10.1016/j.ijpharm.2024.124733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
A suite of fasted state simulated intestinal fluid (SIF), based on variability observed in a range of fasted state human intestinal fluid (HIF) samples was used to study the solubility of eight poorly soluble drugs (three acidic drugs (naproxen, indomethacin and phenytoin), two basic drugs (carvedilol and tadalafil) and three neutral drugs (felodipine, fenofibrate, griseofulvin)). Particle size of the colloidal structures formed in these SIF in the presence and absence of drugs was measured using dynamic light scattering and nanoparticle tracking analysis. Results indicate that drug solubility tends to increase with increasing total amphiphile concentration (TAC) in SIF with acidic drugs proving to be more soluble than basic or neutral drug in the media evaluated. Dynamic light scattering showed that as the amphiphile concentration increased, the hydrodynamic diameters of the structures decreased. The scattering distribution confirmed the polydispersity of the simulated intestinal fluids compared to the monodisperse distribution observed for FaSSIF v1). There was a large difference in the size of the structures found based on the composition of the SIF, for example, the diameter of the structures measured in felodipine in the minimum TAC media was measured to be 170 ± 5 nm which decreased to 5.1 ± 0.2 nm in the maximum TAC media point. The size measured of the colloidal structures of felodipine in the FaSSIF v1 was 86 ± 1 nm. However, there was no simple correlation between solubility and colloidal size. Nanoparticle tracking analysis was used for the first time to characterise colloidal structures within SIF and the results were compared to those obtained by dynamic light scattering. The particle size measured by dynamic light scattering was generally greater in media with a lower concentration of amphiphiles and smaller in media of a higher concentration of amphiphiles, compared to that of the data yielded by nanoparticle tracking analysis. This work shows that the colloidal structures formed vary depending on the composition of SIF which affects the solubility. Work is ongoing to determine the relationship between colloidal structure and solubility.
Collapse
Affiliation(s)
- Zoe McKinnon
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Gavin W Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Hannah K Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| |
Collapse
|
2
|
Sebők-Nagy K, Kóta Z, Kincses A, Fazekas ÁF, Dér A, László Z, Páli T. Spin-Label Electron Paramagnetic Resonance Spectroscopy Reveals Effects of Wastewater Filter Membrane Coated with Titanium Dioxide Nanoparticles on Bovine Serum Albumin. Molecules 2023; 28:6750. [PMID: 37836593 PMCID: PMC10574081 DOI: 10.3390/molecules28196750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The accumulation of proteins in filter membranes limits the efficiency of filtering technologies for cleaning wastewater. Efforts are ongoing to coat commercial filters with different materials (such as titanium dioxide, TiO2) to reduce the fouling of the membrane. Beyond monitoring the desired effect of the retention of biomolecules, it is necessary to understand what the biophysical changes are in water-soluble proteins caused by their interaction with the new coated filter membranes, an aspect that has received little attention so far. Using spin-label electron paramagnetic resonance (EPR), aided with native fluorescence spectroscopy and dynamic light scattering (DLS), here, we report the changes in the structure and dynamics of bovine serum albumin (BSA) exposed to TiO2 (P25) nanoparticles or passing through commercial polyvinylidene fluoride (PVDF) membranes coated with the same nanoparticles. We have found that the filtering process and prolonged exposure to TiO2 nanoparticles had significant effects on different regions of BSA, and denaturation of the protein was not observed, neither with the TiO2 nanoparticles nor when passing through the TiO2-coated filter membranes.
Collapse
Affiliation(s)
- Krisztina Sebők-Nagy
- Institute of Biophysics, Biological Research Centre Szeged, 6726 Szeged, Hungary; (K.S.-N.); (Z.K.); (A.K.); (A.D.)
| | - Zoltán Kóta
- Institute of Biophysics, Biological Research Centre Szeged, 6726 Szeged, Hungary; (K.S.-N.); (Z.K.); (A.K.); (A.D.)
| | - András Kincses
- Institute of Biophysics, Biological Research Centre Szeged, 6726 Szeged, Hungary; (K.S.-N.); (Z.K.); (A.K.); (A.D.)
| | - Ákos Ferenc Fazekas
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, 6725 Szeged, Hungary; (Á.F.F.); (Z.L.)
| | - András Dér
- Institute of Biophysics, Biological Research Centre Szeged, 6726 Szeged, Hungary; (K.S.-N.); (Z.K.); (A.K.); (A.D.)
| | - Zsuzsanna László
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, 6725 Szeged, Hungary; (Á.F.F.); (Z.L.)
| | - Tibor Páli
- Institute of Biophysics, Biological Research Centre Szeged, 6726 Szeged, Hungary; (K.S.-N.); (Z.K.); (A.K.); (A.D.)
| |
Collapse
|
3
|
Tinku, Prajapati AK, Choudhary S. Physicochemical insights into the micellar delivery of doxycycline and minocycline to the carrier protein in aqueous environment. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Figueroa-Ochoa EB, Bravo-Anaya LM, Vaca-López R, Landázuri-Gómez G, Rosales-Rivera LC, Diaz-Vidal T, Carvajal F, Macías-Balleza ER, Rharbi Y, Soltero-Martínez JFA. Structural Behavior of Amphiphilic Triblock Copolymer P104/Water System. Polymers (Basel) 2023; 15:polym15112551. [PMID: 37299350 DOI: 10.3390/polym15112551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
A detailed study of the different structural transitions of the triblock copolymer PEO27-PPO61-PEO27 (P104) in water, in the dilute and semi-dilute regions, is addressed here as a function of temperature and P104 concentration (CP104) by mean of complimentary methods: viscosimetry, densimetry, dynamic light scattering, turbidimetry, polarized microscopy, and rheometry. The hydration profile was calculated through density and sound velocity measurements. It was possible to identify the regions where monomers exist, spherical micelle formation, elongated cylindrical micelles formation, clouding points, and liquid crystalline behavior. We report a partial phase diagram including information for P104 concentrations from 1 × 10-4 to 90 wt.% and temperatures from 20 to 75 °C that will be helpful for further interaction studies with hydrophobic molecules or active principles for drug delivery.
Collapse
Affiliation(s)
- Edgar Benjamín Figueroa-Ochoa
- Departamento de Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara 44430, Jalisco, Mexico
| | - Lourdes Mónica Bravo-Anaya
- Université Grenoble Alpes, CNRS, Grenoble INP (Institut of Engineering Univ. Grenoble Alpes), 38000 Grenoble, France
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara 44430, Jalisco, Mexico
- Université de Rennes, Institut des Sciences Chimiques de Rennes, Équipe CORINT, CNRS, UMR 6226, Campus de Beaulieu, Bat 10A, 35042 Rennes Cedex, France
| | - Ricardo Vaca-López
- Departamento de Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara 44430, Jalisco, Mexico
| | - Gabriel Landázuri-Gómez
- Université Grenoble Alpes, CNRS, Grenoble INP (Institut of Engineering Univ. Grenoble Alpes), 38000 Grenoble, France
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara 44430, Jalisco, Mexico
| | - Luis Carlos Rosales-Rivera
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara 44430, Jalisco, Mexico
| | - Tania Diaz-Vidal
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara 44430, Jalisco, Mexico
| | - Francisco Carvajal
- Centro Universitario UTEG, Departamento de Investigación, Héroes Ferrocarrileros #1325, Guadalajara 44460, Jalisco, Mexico
- CUTonalá, Departamento de Ingenierías, Universidad de Guadalajara, Nuevo Periférico # 555, Ejido San José Tatepozco 45425, Jalisco, Mexico
| | - Emma Rebeca Macías-Balleza
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara 44430, Jalisco, Mexico
| | - Yahya Rharbi
- Université Grenoble Alpes, CNRS, Grenoble INP (Institut of Engineering Univ. Grenoble Alpes), 38000 Grenoble, France
| | - J Félix Armando Soltero-Martínez
- Université Grenoble Alpes, CNRS, Grenoble INP (Institut of Engineering Univ. Grenoble Alpes), 38000 Grenoble, France
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara 44430, Jalisco, Mexico
| |
Collapse
|
5
|
Li J, Liu P. Facile Synthesis of a Redox-Responsive Hyperbranched Polymer Prodrug as a Unimolecular Micelle for the Tumor-Selective Drug Delivery. Bioconjug Chem 2022; 33:411-417. [PMID: 35090123 DOI: 10.1021/acs.bioconjchem.2c00013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Demicellization of the self-assembled multimolecular micelles upon dilution restricts their application as drug delivery systems (DDSs) for tumor treatment. Here, a redox-responsive hyperbranched polymer prodrug (HBPP) was designed with a high drug content of 62.0% as a unimolecular micelle for the tumor-selective drug delivery, via the facile self-condensing vinyl polymerization (SCVP) of redox-responsive doxorubicin-based prodrug monomer MA-SS-DOX and poly(ethylene glycol) methacrylate (PEGMA) with p-chloromethylstyrene (CMS) as an inimer. The unimolecular micelle could be easily obtained with a hydrodynamic diameter of 122 nm, showing excellent GSH-triggered drug release performance with a cumulative release of 60.9% within 85 h but a low premature drug leakage of 3.2%. The unimolecular micelle exhibited selective tumor growth inhibition on HepG2 cells but no obvious cytotoxicity on L02 cells.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Machado MGC, de Oliveira MA, Lanna EG, Siqueira RP, Pound-Lana G, Branquinho RT, Mosqueira VCF. Photodynamic therapy with the dual-mode association of IR780 to PEG-PLA nanocapsules and the effects on human breast cancer cells. Biomed Pharmacother 2021; 145:112464. [PMID: 34864313 DOI: 10.1016/j.biopha.2021.112464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023] Open
Abstract
IR780 is a near-infrared fluorescent dye, which can be applied as a photosensitizer in photodynamic (PDT) and photothermal (PTT) therapies and as a biodistribution tracer in imaging techniques. We investigated the growth and migration inhibition and mechanism of death of breast tumor cells, MCF-7 and MDA-MB-231, exposed to polymeric nanocapsules (NC) comprising IR780 covalently linked to the biodegradable polymer PLA (IR-PLA) and IR780 physically encapsulated (IR780-NC) in vitro. Both types of NC had mean diameters around 120 nm and zeta potentials around -40 mV. IR-PLA-NC was less cytotoxic than IR780 NC to a non-tumorigenic mammary epithelial cell line, MCF-10A, which is an important aspect of selectivity. Free-IR780 was more cytotoxic than IR-PLA-NC for MCF-7 and MDA-MB-231 cells after illumination with a 808 nm laser. IR-PLA NC was effective to inhibit colony formation (50%) and migration (30-40%) for both cancer cell lines. MDA-MB-231 cells were less sensitive to all IR780 formulations compared to MCF-7 cells. Cell uptake was higher with IR-PLA-NC than with IR780-NC and free-IR780 in both cancer cell lines (p < 0.05). NC uptake was higher in MCF-7 than in MDA-MB-231 cells. IR-PLA-NC induced a higher percentage of apoptosis upon illumination in MDA-MB-231 than in MCF-7 cells. The necrosis mechanism of death predominated in treatments with free-IR780 and with encapsulated IR780 NC, suggestive of damages at the plasma membrane. IR780 conjugated with PLA increased the apoptotic pathway and demonstrated potential as a multifunctional theranostic agent for breast cancer treatment with increased cellular uptake, photodynamic activity and more reliable tracking in cell-image studies.
Collapse
Affiliation(s)
| | - Maria Alice de Oliveira
- Laboratory of Pharmaceutics and Nanotechnology, School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Elisa Gomes Lanna
- Laboratory of Pharmaceutics and Nanotechnology, School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Raoni Pais Siqueira
- Laboratory of Pharmaceutics and Nanotechnology, School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Gwenaelle Pound-Lana
- Laboratory of Pharmaceutics and Nanotechnology, School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Renata Tupinambá Branquinho
- Laboratory of Pharmaceutics and Nanotechnology, School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | | |
Collapse
|
7
|
Polat H, Eren MC, Polat M. The effect of protein BSA on the stability of lipophilic drug (docetaxel)-loaded polymeric micelles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Kattar A, Concheiro A, Alvarez-Lorenzo C. Diabetic eye: associated diseases, drugs in clinic, and role of self-assembled carriers in topical treatment. Expert Opin Drug Deliv 2021; 18:1589-1607. [PMID: 34253138 DOI: 10.1080/17425247.2021.1953466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Diabetes is a pandemic disease that causes relevant ocular pathologies. Diabetic retinopathy, macular edema, cataracts, glaucoma, or keratopathy strongly impact the quality of life of the patients. In addition to glycemic control, intense research is devoted to finding more efficient ocular drugs and improved delivery systems that can overcome eye barriers. Areas covered: The aim of this review is to revisit first the role of diabetes in the development of chronic eye diseases. Then, commercially available drugs and new candidates in clinical trials are tackled together with the pros and cons of their administration routes. Subsequent sections deal with self-assembled drug carriers suitable for eye instillation combining patient-friendly administration with high ocular bioavailability. Performance of topically administered polymeric micelles, liposomes, and niosomes for the management of diabetic eye diseases is analyzed in the light of ex vivo and in vivo results and outcomes of clinical trials. Expert opinion: Self-assembled carriers are being shown useful for efficient delivery of not only a variety of small drugs but also macromolecules (e.g. antibodies) and genes. Successful design of drug carriers may offer alternatives to intraocular injections and improve the treatment of both anterior and posterior segments diabetic eye diseases.
Collapse
Affiliation(s)
- Axel Kattar
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|