1
|
Xiao Z, Yu P, Sun P, Kang Y, Niu Y, She Y, Zhao D. Inclusion complexes of β-cyclodextrin with isomeric ester aroma compounds: Preparation, characterization, mechanism study, and controlled release. Carbohydr Polym 2024; 333:121977. [PMID: 38494230 DOI: 10.1016/j.carbpol.2024.121977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Cyclodextrins (CDs) have been discovered to provide an efficient solution to the limited application of ester aroma molecules used in food, tobacco, and medication due to their strong smell and unstable storage. This work combined molecular modeling and experimental to analyze the conformation and controlled release of isomeric ester aroma compounds/β-CD inclusion complexes (ICs). The investigation revealed that ester aroma compounds could be effectively encapsulated within the β-CD cavity, forming ICs with low binding affinity. Furthermore, the key driving forces in ICs were identified as hydrogen bonds and van der Waals interactions through theoretical simulation. Results from the Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments confirmed the intermolecular interaction predicted by the molecular model. Notably, the release rate of aroma compounds from L-menthyl acetate/β-CD (LMA/β-CD) IC exceeded that of terpinyl acetate/β-CD (TA/β-CD) IC. This difference is attributed to the length of the chain of aroma molecules and the variation in the position of functional groups, influencing the stable formation of ICs with β-CD. These findings hold potential implications for refining the application of ICs across diverse industries.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Peiran Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
2
|
Shah S, Famta P, Vambhurkar G, Bagasariya D, Kumar KC, Srinivasarao DA, Begum N, Sharma A, Shahrukh S, Jain N, Khatri DK, Srivastava S. Sulfo-butyl ether β-cyclodextrin inclusion complexes of bosutinib: in silico, in vitro and in vivo evaluation in attenuating the fast-fed variability. Drug Deliv Transl Res 2024; 14:1218-1231. [PMID: 37903963 DOI: 10.1007/s13346-023-01453-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/01/2023]
Abstract
Bosutinib (BOS) is a BCS class IV drug that shows low oral bioavailability and high fast-fed variability. Various pharmaceutical formulations have been explored thus far in order to improve its bioavailability while avoiding fast-fed variability. In the present study, we explored cyclodextrin (CD) complexation strategy to overcome the aforementioned disadvantages associated with BOS. CD complexation is a simple, versatile and economic approach that enables formation of inclusion complexes, thereby improving aqueous solubility while nullifying pH-dependent solubility and fast-fed variability for poorly soluble drugs. Initially, we performed molecular dynamics and docking studies to select appropriate CD derivative. The results of in silico studies revealed that sulfo-butyl ether β-cyclodextrin (SBE-CD) offered superior binding affinity with BOS. Further, Job's plot revealed that 1:1 stoichiometry of BOS and CD resulted in enhancement of BOS solubility up to ~ 132.6-folds. In vitro release studies in bio-relevant media (fasted and fed state simulated gastric and intestinal fluids) revealed higher drug release while overcoming its pH-dependent solubility. In vitro studies on K562 cells demonstrated a 1.83-fold enhancement in cytotoxicity due to enhanced ROS production and G2/M phase arrest.In vivo pharmacokinetic studies in Sprague-Dawley rats revealed insignificant fast-fed variability with AUCfast/fed 0.9493 and Cmaxfast/fed 0.8291 being closer to 1 in comparison with BOS. Hence, we conclude that SBE-CD complexation could be a promising approach in diminishing fast-fed variability of BOS.
Collapse
Affiliation(s)
- Saurabh Shah
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nusrat Begum
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
3
|
Li S, Chen J, Liu Y, Qiu H, Gao W, Che K, Zhou B, Liu R, Hu W. Characterization of garlic oil/β-cyclodextrin inclusion complexes and application. Front Nutr 2023; 10:1308787. [PMID: 38094921 PMCID: PMC10716253 DOI: 10.3389/fnut.2023.1308787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/14/2023] [Indexed: 06/19/2024] Open
Abstract
Garlic oil is a liquid extracted from garlic that has various natural antibacterial and anti-inflammatory properties and is believed to be used to prevent and treat many diseases. However, the main functional components of garlic oil are unstable. Therefore, in this study, encapsulating garlic oil with cyclodextrin using the saturated co-precipitation method can effectively improve its chemical stability and water solubility and reduce its characteristic odor and taste. After preparation, the microcapsules of garlic oil cyclodextrin were characterized, which proved that the encapsulation was successful. Finally, the results showed that the encapsulated garlic oil still had antioxidant ability and slow-release properties. The final addition to plant-based meat gives them a delicious flavor and adds texture and mouthfeel. Provided a new reference for the flavor application of garlic cyclodextrin micro-capsules in plant-based meat patties.
Collapse
Affiliation(s)
- Shangjian Li
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Jiajia Chen
- Zhuhai Livzon Microsphere Technology Co. Ltd., Zhuhai, China
| | - Yuntong Liu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Honghao Qiu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Wei Gao
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Kundian Che
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Baogang Zhou
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Ran Liu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Wenzhong Hu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Dalian Minzu University, Dalian, China
| |
Collapse
|
4
|
Lin Y, Huang R, Sun X, Yu X, Xiao Y, Wang L, Hu W, Zhong T. The p-Anisaldehyde/β-cyclodextrin inclusion complexes as a sustained release agent: Characterization, storage stability, antibacterial and antioxidant activity. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Ma X, Gong H, Ogino K, Yan X, Xing R. Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:284-291. [PMID: 35281632 PMCID: PMC8895033 DOI: 10.3762/bjnano.13.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/18/2022] [Indexed: 05/09/2023]
Abstract
Oxidative stress can lead to permanent and irreversible damage to cellular components and even cause cancer and other diseases. Therefore, the development of antioxidative reagents is an important strategy to alleviate chronic diseases and maintain the redox balance in cells. Small-molecule bioactive compounds have exhibited huge therapeutic potential as antioxidants and anti-inflammatory agents. Myricetin (Myr), a well-known natural flavonoid, has drawn wide attention because of its high antioxidant, anti-inflammatory, antimicrobial, and anticancer efficacy. Especially regarding antioxidation, Myr is capable of not only chelating intracellular transition metal ions for removing reactive oxygen species, but also of activating antioxidant enzymes and related signal pathways and, thus, of sustainably scavenging radicals. However, Myr is poorly soluble in water, which limits its bioavailability for biomedical applications, and even its clinical therapeutic potential. The antioxidant peptide glutathione (GSH) plays a role as antioxidant in cells and possesses good hydrophilicity and biocompatibility. However, it is easily metabolized by enzymes. To take advantages of their antioxidation activity and to overcome the abovementioned limitations, GSH, Zn2+, and Myr were selected to co-assemble into Myr-Zn2+-GSH nanoparticles or nanoarchitectonics. This study offers a new design to harness stable, sustainable antioxidant nanoparticles with high loading capacity, high bioavailability, and good biocompatibility as antioxidants.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
- State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Institute of Process Engineering, Beijing, P. R. China
| | - Haoning Gong
- State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Institute of Process Engineering, Beijing, P. R. China
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Institute of Process Engineering, Beijing, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Institute of Process Engineering, Beijing, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
6
|
Conventional and Enzyme-Assisted Extraction of Rosemary Leaves (Rosmarinus officinalis L.): Toward a Greener Approach to High Added-Value Extracts. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effect of different extraction methods of rosemary leaves on the total phenolic content (TPC), and the antioxidant activity of the extracts was herein investigated. Firstly, the solid-liquid conventional extraction (CEM) and microwave-assisted extraction (MAE) were implemented in an effort to identify the effect of the solvent and of microwave irradiation on the extract quality. The extract obtained from CEM at room temperature, using ethanol/water 95:5 v/v, showed the highest antioxidant activity (IC50 = 12.1 μg/mL). MAE using ethanol/water 50:50 v/v provided an extract with TPC and DPPH radical scavenging ability in a significantly shorter extraction time (1 h for MAE and 24 h for CEM). Enzyme-assisted extraction (EAE) using five commercial enzyme formulations was implemented, and the kinetic equation was calculated. Finally, the effect of EAE as a pretreatment method to CEM was examined. Pretreatment of the plant material with pectinolytic enzymes for 1 h prior to a 24 h CEM with 50% hydroethanolic solvent was found to be the optimum conditions for the extraction of rosemary leaves, providing an extract with higher DPPH radical scavenging ability (IC50 14.3 ± 0.8 μg/mL) and TPC (15.2 ± 0.3 mgGAE/grosemary) than the corresponding extract without the enzyme pretreatment.
Collapse
|
7
|
Campelo MDS, Melo EO, Arrais SP, Nascimento FBSAD, Gramosa NV, Soares SDA, Ribeiro MENP, Silva CRD, Júnior HVN, Ricardo NMPS. Clove essential oil encapsulated on nanocarrier based on polysaccharide: A strategy for the treatment of vaginal candidiasis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Pontillo ARN, Konstanteli E, Bairaktari MM, Detsi A. Encapsulation of the Natural Product Tyrosol in Carbohydrate Nanosystems and Study of Their Binding with ctDNA. Polymers (Basel) 2020; 13:polym13010087. [PMID: 33379388 PMCID: PMC7794917 DOI: 10.3390/polym13010087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
Tyrosol, a natural product present in olive oil and white wine, possesses a wide range of bioactivity. The aim of this study was to optimize the preparation of nanosystems encapsulating tyrosol in carbohydrate matrices and the investigation of their ability to bind with DNA. The first encapsulation matrix of choice was chitosan using the ionic gelation method. The second matrix was β-cyclodextrin (βCD) using the kneading method. Coating of the tyrosol-βCD ICs with chitosan resulted in a third nanosystem with very interesting properties. Optimal preparation parameters of each nanosystem were obtained through two three-factor, three-level Box-Behnken experimental designs and statistical analysis of the results. Thereafter, the nanoparticles were evaluated for their physical and thermal characteristics using several techniques (DLS, NMR, FT-IR, DSC, TGA). The study was completed with the investigation of the impact of the encapsulation on the ability of tyrosol to bind to calf thymus DNA. The results revealed that tyrosol and all the studied systems bind to the minor groove of ctDNA. Tyrosol interacts with ctDNA via hydrogen bond formation, as predicted via molecular modeling studies and corroborated by the experiments. The tyrosol-chitosan nanosystem does not show any binding to ctDNA whereas the βCD inclusion complex shows analogous interaction with that of free tyrosol.
Collapse
Affiliation(s)
- Antonella Rozaria Nefeli Pontillo
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Greece; (A.R.N.P.); (E.K.); (M.M.B.)
| | - Evangelia Konstanteli
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Greece; (A.R.N.P.); (E.K.); (M.M.B.)
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria M. Bairaktari
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Greece; (A.R.N.P.); (E.K.); (M.M.B.)
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Greece; (A.R.N.P.); (E.K.); (M.M.B.)
- Correspondence:
| |
Collapse
|