1
|
Zheng SF, Wu ZY, Gao YY, Yang YR, Wang XD, Gross U. Asymmetric Condensation Characteristics during Dropwise Condensation in the Presence of Non-condensable Gas: A Lattice Boltzmann Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9760-9776. [PMID: 35917451 DOI: 10.1021/acs.langmuir.2c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, the condensation characteristics of droplets considering the non-condensable gas with different interaction effects are numerically studied utilizing a multicomponent multiphase thermal lattice Boltzmann (LB) model, with a special focus on the asymmetric nature induced by the interaction effect. The results demonstrate that for isolated-like growth with negligible interactions, the condensation characteristics, that is, the concentration profile, the temperature distribution, and the flow pattern, are typically symmetric in nature. For the growth regime in a pattern, the droplet has to compete with its neighbors for catching vapor, which leads to an overlapping concentration profile (namely the interaction effect). The distribution of the condensation flux on the droplet surface is consequently modified, which contributes to the asymmetric flow pattern and temperature profile. The condensation characteristics for droplet growth in a pattern present an asymmetric nature. Significantly, the asymmetric condensation flux resulting from the interaction effect can induce droplet motion. The results further demonstrate that the interaction strongly depends on the droplet's spatial and size distribution, including two crucial parameters, namely the inter-distance and relative size of droplets. The asymmetric condensation characteristics are consequently dependent on the difference in the interaction intensities on both sides of the droplet. Finally, we demonstrate numerically and theoretically that the evolution of the droplet radius versus time can be suitably described by a power law; the corresponding exponent is kept at a constant of 0.50 for isolated-like growth and is strongly sensitive to the interaction effect for the growth in a pattern.
Collapse
Affiliation(s)
- Shao-Fei Zheng
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
| | - Zi-Yi Wu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
| | - Yi-Ying Gao
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
| | - Yan-Ru Yang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
| | - Xiao-Dong Wang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
| | - Ulrich Gross
- Institute of Thermal Engineering, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 7, 09599 Freiberg, Germany
| |
Collapse
|
2
|
Shukla D, Panigrahi PK. Interaction of vapor cloud and its effect on evaporation from microliter coaxial well. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Hegde O, Basu S. Spatio-temporal modulation of self-assembled central aggregates of buoyant colloids in sessile droplets using vapor mediated interactions. J Colloid Interface Sci 2021; 598:136-146. [PMID: 33895535 DOI: 10.1016/j.jcis.2021.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 11/24/2022]
Abstract
A functional sessile droplet containing buoyant colloids (ubiquitous in applications like chemical sensors, drug delivery systems, and nanoreactors) forms self-assembled aggregates. The particles initially dispersed over the entire drop-flocculates at the center. We attribute the formation of such aggregates to the finite radius of curvature of the drop and the buoyant nature of particles. Initially, larger particles rise to the top of the droplet (due to higher buoyancy force), and later the smaller particles join the league, leading to the graded size distribution of the central aggregate. This can be used to segregate polydisperse hollow spheres based on size. The proposed scaling analysis unveils insights into the distinctive particle transport during evaporation. However, the formation of prominent aggregates can be detrimental in applications like spray painting, sprinkling of pesticides, washing, coating, lubrication, etc. One way to avoid the central aggregate is to spread the droplets completely (contact angle ~ 00), thus theoretically creating an infinite radius of curvature leading to uniform deposition of buoyant particles. Practically, this requires a highly hydrophilic surface, and even a small inhomogeneity on the surface would pin the droplet giving it a finite radius of curvature. Here, we demonstrate using non-intrusive vapor mediated Marangoni convection (Velocity scale ~ O(103) higher than the evaporation-driven convection) can be vital to an efficient and on-demand manipulation of the suspended micro-objects. The interplay of surface tension and buoyancy force results in the transformation of flow inside the droplet leads to spatiotemporal disbanding of agglomeration at the center of the droplet.
Collapse
Affiliation(s)
- Omkar Hegde
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Saptarshi Basu
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
4
|
Li Y, Huang J, Cheng J, Xu S, Pi P, Wen X. Enhanced Movement of Two-Component Droplets on a Wedge-Shaped Ag/Cu Surface by a Wettability Gradient. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15857-15865. [PMID: 33765767 DOI: 10.1021/acsami.1c00517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The wedge-shaped Ag/Cu surface with a contact angle (CA) [droplet of 30 vol % propylene glycol (PG)] of 18.6° in the wedge track and 64.6° at its periphery was fabricated through a facile gradient displacement reaction on the Cu substrate. The aqueous droplet of 30% PG could realize directed motion on the wedge track without back-end pinning, moving in a two-stage process of front-end spreading and subsequent back-end shrinking. A wettability gradient from 64.6 to 18.6° on the wedge surface could enhance the droplet motion, especially during the second stage. A favorable length of the wettability gradient (15 mm) was obtained, capable of moving the droplet the farthest displacement of 21.6 mm at a velocity of 0.53 mm/s on a wedge track with the wedge angle of α = 10° and length of 25 mm. The driving force arising from the wettability gradient during the second stage was evaluated theoretically to elucidate the effect of the length of the wettability gradient on the movement. Finally, three T-shaped self-driven surface micromixers composed of a mixing zone with uniform wettability and a transportation zone with different gradients were designed to test the drainage ability of droplets away from the surface. The wedge track combined with the wettability gradient was found to be capable of removing the mixed droplet completely out of the mixing region and flowing away, while the droplet would attach or stay in the mixing zone if actuated by the shape gradient or the wettability gradient alone.
Collapse
Affiliation(s)
- Yiliang Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Jinmei Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Jiang Cheng
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Shouping Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Pihui Pi
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Xiufang Wen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|