1
|
Liu J, Li C, Zhang S, Wei X, Gao Y, Wang F, Yan M, Wang J, Zhang Y. Green Synthesis of Boric Acid Modified Bismuth Based Non-Toxic Perovskite Quantum Dots for Highly Sensitive Detection of Oxytetracycline. J Fluoresc 2024:10.1007/s10895-024-03933-0. [PMID: 39325301 DOI: 10.1007/s10895-024-03933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
In recent years, perovskite quantum dots (PQDs) have successfully attracted widespread attention due to their excellent optical properties. However, the instability and toxicity problems of perovskite quantum dots are the main obstacles limiting their applications. In this work, bismuth-based perovskite quantum dots were synthesized by a ligand-assisted reprecipitation method, based on which a novel boric acid-functionalized bismuth-based non-toxic perovskite quantum dots fluorescent sensor (Cs3Bi2Br9-APBA) that can be stabilized in the ethanol phase was prepared by a boron affinity technique. Based on the covalent binding interaction of Cs3Bi2Br9-APBA with oxytetracycline (OTC), a highly selective and sensitive method for the detection of OTC was developed, which effectively solved the problems of poor stability and toxicity in the application of perovskite quantum dots. Under the optimal conditions, the fluorescence intensity of the synthesized Cs3Bi2Br9-APBA was linear with the concentration range of 0.1 ∼ 18 µM OTC, and the detection limit could reach 0.0802 µM. The fluorescence detection mechanism was explored and analyzed by spectral overlap analysis, suppression efficiency study of observed and corrected fluorescence, and fluorescence lifetime decay curve fitting, the mechanism of OTC detection by Cs3Bi2Br9-APBA was identified as the inner filter effect (IFE). In addition, the sensor successfully realized the quantitative detection of trace OTC in the environment, and our study provides a new idea for the preparation of green perovskite materials with high stability and selectivity.
Collapse
Affiliation(s)
- Jiali Liu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
- Key Laboratory of Ecological Hydrology and Water Security in Arid Areas of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
| | - Chen Li
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
- Key Laboratory of Ecological Hydrology and Water Security in Arid Areas of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
| | - Shen Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
- Key Laboratory of Ecological Hydrology and Water Security in Arid Areas of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
| | - Xiao Wei
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China.
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China.
- Key Laboratory of Ecological Hydrology and Water Security in Arid Areas of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China.
| | - Yue Gao
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
- Key Laboratory of Ecological Hydrology and Water Security in Arid Areas of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
| | - Fei Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
- Key Laboratory of Ecological Hydrology and Water Security in Arid Areas of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
| | - Mengwei Yan
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
- Key Laboratory of Ecological Hydrology and Water Security in Arid Areas of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
| | - Jiaqi Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
- Key Laboratory of Ecological Hydrology and Water Security in Arid Areas of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
| | - Yuhui Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
- Key Laboratory of Ecological Hydrology and Water Security in Arid Areas of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China
| |
Collapse
|
2
|
Cui Y, Li X, Wang X, Liu Y, Hu X, Chen S, Qu X. One-Pot Preparation of Ratiometric Fluorescent Molecularly Imprinted Polymer Nanosensor for Sensitive and Selective Detection of 2,4-Dichlorophenoxyacetic Acid. SENSORS (BASEL, SWITZERLAND) 2024; 24:5039. [PMID: 39124086 PMCID: PMC11315029 DOI: 10.3390/s24155039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The development of fluorescent molecular imprinting sensors for direct, rapid, and sensitive detection of small organic molecules in aqueous systems has always presented a significant challenge in the field of detection. In this study, we successfully prepared a hydrophilic colloidal molecular imprinted polymer (MIP) with 2,4-dichlorophenoxyacetic acid (2,4-D) using a one-pot approach that incorporated polyglycerol methacrylate (PGMMA-TTC), a hydrophilic macromolecular chain transfer agent, to mediate reversible addition-fragmentation chain transfer precipitation polymerization (RAFTPP). To simplify the polymerization process while achieving ratiometric fluorescence detection, red fluorescent CdTe quantum dots (QDs) and green fluorescent nitrobenzodiazole (NBD) were introduced as fluorophores (with NBD serving as an enhancer to the template and QDs being inert). This strategy effectively eliminated background noise and significantly improved detection accuracy. Uniform-sized MIP microspheres with high surface hydrophilicity and incorporated ratiometric fluorescent labels were successfully synthesized. In aqueous systems, the hydrophilic ratio fluorescent MIP exhibited a linear response range from 0 to 25 μM for the template molecule 2,4-D with a detection limit of 0.13 μM. These results demonstrate that the ratiometric fluorescent MIP possesses excellent recognition characteristics and selectivity towards 2,4-D, thus, making it suitable for selective detection of trace amounts of pesticide 2,4-D in aqueous systems.
Collapse
Affiliation(s)
- Yuhong Cui
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin 300401, China; (Y.C.); (X.L.); (X.H.)
| | - Xintai Li
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin 300401, China; (Y.C.); (X.L.); (X.H.)
| | - Xianhong Wang
- Tianjin Key Laboratory of New Materials and Systems for HVAC Plumbing, Tianjin 300400, China;
| | - Yingchun Liu
- Jinghua Plastics Co., Ltd., Langfang 065800, China;
| | - Xiuli Hu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin 300401, China; (Y.C.); (X.L.); (X.H.)
| | - Shengli Chen
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin 300401, China; (Y.C.); (X.L.); (X.H.)
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin 300401, China; (Y.C.); (X.L.); (X.H.)
| |
Collapse
|
3
|
Cao H, Han Y, Chen Z, Ding X, Ye T, Yuan M, Yu J, Wu X, Hao L, Yin F, Xu F. A smartphone sensing platform for the sensitive and selective detection of clothianidin based on MIP-functionalized lanthanide MOF. Mikrochim Acta 2024; 191:172. [PMID: 38433173 DOI: 10.1007/s00604-024-06217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/17/2024] [Indexed: 03/05/2024]
Abstract
A novel molecularly imprinted nanomaterial (Eu (BTC)-MPS@MIP) was synthesized on the surface of silanized europium-based metal-organic frameworks (Eu (BTC)-MPS) using 1, 3, 5-benzotrioic acid (H3BTC) as a ligand. The resulting Eu (BTC)-MPS@MIP was applied to constructing a smartphone sensing platform for the sensitive and selective detection of clothianidin (CLT) in vegetables. The synthesized Eu (BTC)-MPS@MIP demonstrated the successful formation of a typical core-shell structure featuring a shell thickness of approximately 70 - 80 nm. The developed sensing platform based on Eu (BTC)-MPS@MIP exhibited sensitivity in CLT detection with a detection limit of 4 µg/L and a linear response in the range 0.01 - 10 mg/L at excitation and emission wavelengths of 365 nm and 617 nm, respectively. The fluorescence sensing platform displayed excellent specificity for CLT detection, as evidenced by a high imprinting factor of 3.1. This specificity is primarily attributed to the recognition sites in the molecularly imprinted polymer (MIP) layer. When applied to spiked vegetable samples, the recovery of CLT ranged from 78.9 to 102.0%, with relative standard deviation (RSD) values falling between 2.2 and 6.2%. The quenching mechanism of Eu (BTC)-MPS@MIP toward CLT can be attributed to the inner filter effect (IFE), resulting from the optimal spectral overlap between the absorption spectrum of CLT and the excitation spectra of Eu (BTC)-MPS@MIP. The proposed method has the potential for extension to the detection of other pesticides by replacing the MIP recognition probes.
Collapse
Affiliation(s)
- Hui Cao
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Yiyi Han
- Shanghai Center of Agri-Products Quality and Safety, Shanghai, 201708, People's Republic of China
| | - Zixin Chen
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Xiner Ding
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Tai Ye
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Min Yuan
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Jinsong Yu
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Xiuxiu Wu
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Liling Hao
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Fengqin Yin
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Fei Xu
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China.
| |
Collapse
|
4
|
Zhang X, Wang M, Zhang Y, Zhao P, Cai J, Yao Y, Liang J. Preparation of Molecularly Imprinted Cysteine Modified Zinc Sulfide Quantum Dots Based Sensor for Rapid Detection of Dopamine Hydrochloride. Molecules 2023; 28:molecules28093646. [PMID: 37175056 PMCID: PMC10180347 DOI: 10.3390/molecules28093646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
By combining surface molecular imprinting technology with cysteine-modified ZnS quantum dots, an elegant, molecularly imprinted cysteine-modified Mn2+: ZnS QDs (MIP@ZnS QDs) based fluorescence sensor was successfully developed. The constructed fluorescence sensor is based on a molecularly imprinted polymer (MIP) coated on the surface cysteine-modified ZnS quantum dots and used for rapid fluorescence detection of dopamine hydrochloride. The MIP@ZnS quantum dots possess the advantages of rapid response, high sensitivity, and selectivity for the detection of dopamine hydrochloride molecules. Experimental results show that the adsorption equilibrium time of MIP@ZnS QDs for dopamine hydrochloride molecules is 12 min, and it can selectively capture and bind dopamine in the sample with an imprinting factor of 29.5. The fluorescence quenching of MIP@ZnS QDs has a good linear (R2 = 0.9936) with the concentration of dopamine hydrochloride ranged from 0.01 to 1.0 μM, and the limit of detection is 3.6 nM. In addition, The MIP@ZnS QDs demonstrate good recyclability and stability and are successfully employed for detection of dopamine hydrochloride in urine samples with recoveries was 95.2% to 103.8%. The proposed MIP@ZnS QDs based fluorescent sensor provides a promising approach for food safety detection and drug analysis.
Collapse
Affiliation(s)
- Xin Zhang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang 473061, China
| | - Meng Wang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yating Zhang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Pan Zhao
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jiamei Cai
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yunjian Yao
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jiarong Liang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
5
|
Kharajinezhadian R, Javad Chaichi M, Nazari O, Mansour Lakouraj M, Hasantabar V. Fraud monitoring using a new disposable photoluminescence sensor in milk. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Feng Q, Xie Z, Liang H, Zhang Z, Yan Y, Ding CF. Hydrophilic, dual amino acid-functionalized zinc sulfide quantum dot for specific identification of N-glycopeptides from biological samples. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9405. [PMID: 36166354 DOI: 10.1002/rcm.9405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/07/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Glycosylation of proteins is one of the most significant and complex post-translational modifications, and N-glycosylation plays a crucial role in life activities. Mass spectrometry (MS) has been a powerful technique in the analysis of protein glycosylation. However, the direct detection of glycoproteins in biological samples based on MS still suffers from huge challenges. Therefore, enrichment and purification of samples before MS analysis is an essential prerequisite. METHODS Hydrophilic interaction liquid chromatography (HILIC) has significantly developed for selective enrichment of glycopeptides due to its simple operation process and unbiased enrichment. Herein, hydrophilic, dual amino acid-functionalized zinc sulfide quantum dots (ZnS QDs) were prepared to enrich glycopeptides using an easy procedure. The enriched glycopeptides were detected using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). RESULTS The obtained material exhibited high selectivity (1:2000), low detection limit (0.1 fmol/μl), good repeatability (10 times), and excellent recovery (89.8%) in glycopeptide enrichment. In the actual application in biological samples, 71 N-glycopeptides and 161 N-glycopeptides were detected from human saliva and serum, respectively. CONCLUSIONS ZnS-Au-GC was successfully prepared using an easy method. The results showed that the obtained material exhibited excellent performance in glycopeptide enrichment. Furthermore, it had showed great potential for glycopeptide enrichment in complex biological samples.
Collapse
Affiliation(s)
- Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| | - Zehu Xie
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| | - Zhenbin Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Diez‐Pascual AM, Rahdar A. Functional Nanomaterials in Biomedicine: Current Uses and Potential Applications. ChemMedChem 2022; 17:e202200142. [PMID: 35729066 PMCID: PMC9544115 DOI: 10.1002/cmdc.202200142] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/19/2022] [Indexed: 11/07/2022]
Abstract
Nanomaterials, that is, materials made up of individual units between 1 and 100 nanometers, have lately involved a lot of attention since they offer a lot of potential in many fields, including pharmacy and biomedicine, owed to their exceptional physicochemical properties arising from their high surface area and nanoscale size. Smart engineering of nanostructures through appropriate surface or bulk functionalization endows them with multifunctional capabilities, opening up new possibilities in the biomedical field such as biosensing, drug delivery, imaging, medical implants, cancer treatment and tissue engineering. This article highlights up-to-date research in nanomaterials functionalization for biomedical applications. A summary of the different types of nanomaterials and the surface functionalization strategies is provided. Besides, the use of nanomaterials in diagnostic imaging, drug/gene delivery, regenerative medicine, cancer treatment and medical implants is reviewed. Finally, conclusions and future perspectives are provided.
Collapse
Affiliation(s)
- Ana María Diez‐Pascual
- Universidad de AlcaláDepartamento de Química Analítica Química Física e Ingeniería QuímicaCarretera Madrid-Barcelona Km. 33.628871Alcalá de Henares, MadridSpain
| | - Abbas Rahdar
- Department of PhysicsUniversity of ZabolZabol98613-35856Iran
| |
Collapse
|
8
|
Pulsed-sonochemiluminescence combined with molecularly imprinted polymerized high internal phase emulsion adsorbent for determination of bentazone. Mikrochim Acta 2022; 189:302. [PMID: 35913687 DOI: 10.1007/s00604-022-05406-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 10/16/2022]
Abstract
A small low-power humidifier with a simple programmable on/off switch was used as a pulsed ultrasound generator. Using this tool, a novel sonochemiluminescence (SCL) method was developed to determine bentazone. To the best of our knowledge, no chemiluminescence method has been proposed to determine this pesticide. Only five studies have been proposed for SCL quantitative applications so far. Therefore, revealing new aspects of SCL promises to develop analytical methods for the quantitative determination of different substances. A molecularly imprinted polymerized high internal phase emulsion (MIP-polyHIPE) was synthesized, bentazone separated from aqueous solutions, and pre-concentrated by the MIP-polyHIPE foam. The adsorption of bentazone on the MIP-polyHIPE adsorbent was theoretically studied by density functional theory through molecular dynamics simulation. Both experimental and simulation results indicated removal and pre-concentration of bentazone by the MIP-polyHIPE adsorbent. Using the proposed SCL method and without pre-concentration process, a linear dynamic range (LDR) of 2.5 × 10-7-5.0 × 10-5 mol L-1 and a limit of detection (LOD) of 8.4 × 10-8 mol L-1 were obtained for bentazone with a relative standard deviation of 2.64%. The LDR and LOD were improved to 2.6 × 10-9-2.0 × 10-7 mol L-1 and 8.8 × 10-10 mol L-1, respectively, using MIP-polyHIPE adsorbents. The method's application was evaluated by removing and pre-concentration of bentazone from water samples, including well, river, and tap water. The results showed that the pre-concentration factor and recovery percentages were 113-131 times and 93-106%, respectively, using the MIP-polyHIPE absorbent.
Collapse
|
9
|
Adegoke O, Zolotovskaya S, Abdolvand A, Daeid NN. Fabrication of a near-infrared fluorescence-emitting SiO2-AuZnFeSeS quantum dots-molecularly imprinted polymer nanocomposite for the ultrasensitive fluorescence detection of levamisole. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Ahmadi M, Mokhtari A, Bahlakeh G, Karimian H. Flow Injection Chemiluminescence Determination of Ethion and Computational Investigation of the Adsorption Process on Molecularly Imprinted Polymerized High Internal Phase Emulsion. LUMINESCENCE 2022; 37:1514-1523. [PMID: 35816014 DOI: 10.1002/bio.4325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
The lack of sufficient selectivity is the main limitation of chemiluminescence (CL) methods; because the CL reagent is not restricted to a specific analyte. This study investigated the preconcentration and determination of ethion by a flow injection CL (FIA-CL) method using a molecularly imprinted poly high internal phase emulsion (MIP-polyHIPE) adsorbent. Preliminary studies showed that ethion could be determined with high sensitivity in the Ru (bipy)3 2+ -acidic Ce (IV) CL system. A MIP-polyHIPE adsorbent was synthesized and used for preconcentration to increase the selectivity and sensitivity of the method. The adsorption of ethion on the adsorbent was investigated using density functional theory (DFT) and molecular dynamics (MD), UV-Vis and FTIR spectrophotometry and liquid chromatography-tandem mass spectrometry (LC-MS-MS). Response surface methodology (RSM) and central composite design (CCD) were used to find optimized concentrations of variables. The linear dynamic range (LDR) and limit of detection (LOD) for ethion in the FIA-CL method were calculated 1.0✕10-9 -2.0✕10-7 and 6.0✕10-10 mol L-1 , respectively. The percentage of relative standard deviation for 5 repetitive measurements of 5.0⨯10-8 mol L-1 ethion was 4.2%. The proposed method was successfully used to separate and preconcentrate ethion from drinking and surface water sources.
Collapse
Affiliation(s)
- Maryam Ahmadi
- Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Ali Mokhtari
- Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Ghasem Bahlakeh
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul, Iran
| | - Hossein Karimian
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul, Iran
| |
Collapse
|
11
|
Díez-Pascual AM. Surface Engineering of Nanomaterials with Polymers, Biomolecules, and Small Ligands for Nanomedicine. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3251. [PMID: 35591584 PMCID: PMC9104878 DOI: 10.3390/ma15093251] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022]
Abstract
Nanomedicine is a speedily growing area of medical research that is focused on developing nanomaterials for the prevention, diagnosis, and treatment of diseases. Nanomaterials with unique physicochemical properties have recently attracted a lot of attention since they offer a lot of potential in biomedical research. Novel generations of engineered nanostructures, also known as designed and functionalized nanomaterials, have opened up new possibilities in the applications of biomedical approaches such as biological imaging, biomolecular sensing, medical devices, drug delivery, and therapy. Polymers, natural biomolecules, or synthetic ligands can interact physically or chemically with nanomaterials to functionalize them for targeted uses. This paper reviews current research in nanotechnology, with a focus on nanomaterial functionalization for medical applications. Firstly, a brief overview of the different types of nanomaterials and the strategies for their surface functionalization is offered. Secondly, different types of functionalized nanomaterials are reviewed. Then, their potential cytotoxicity and cost-effectiveness are discussed. Finally, their use in diverse fields is examined in detail, including cancer treatment, tissue engineering, drug/gene delivery, and medical implants.
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
12
|
A nanohybrid magnetic sensing probe for levofloxacin determination integrates porous graphene, selective polymer and graphene quantum dots. J Pharm Biomed Anal 2021; 205:114316. [PMID: 34411981 DOI: 10.1016/j.jpba.2021.114316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 11/21/2022]
Abstract
A nanohybrid magnetic fluorescent sensing probe was designed and fabricated for ultrasensitive and selective determination of levofloxacin. The probe integrated porous graphene (PGr), magnetite (Fe3O4) nanoparticles and graphene quantum dots (GQDs) into selective molecularly imprinted polymer (MIP). The developed probe was sensitive, selective, and its binding ability enriched levofloxacin in complex samples. The fabrication strategy was evaluated to achieve the best performance and the synthesized sensing probe was characterized. In the best condition, the fluorescence emission of the probe was quenched linearly from 0.10 to 25.0 μg L-1 of levofloxacin and the limit of detection was 0.03 μg L-1. The quenching of fluorescence was not affected by the analog compounds ciprofloxacin, lomefloxacin, marbofloxacin and sarafloxacin. The imprinting factor of the developed nanohybrid sensing probe was 4.26. The developed probe was utilized to detect levofloxacin in milk and recoveries between 91.8 % and 100.5 % were achieved with RSDs <6.5 %. Analysis with the optosensor provided the same results as HPLC analysis but the optosensor was more sensitive, less expensive, simpler and more rapid.
Collapse
|
13
|
Wang D, Yang Y, Xu Z, Liu Y, Liu Z, Lin T, Chen X, Liu H. Molecular Simulation-Aided Preparation of Molecularly Imprinted Polymeric Solid-Phase Microextraction Coatings for Kojic Acid Detection in Wheat Starch and Flour Samples. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02039-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Davoodi M, Davar F, Mandani S, Rezaei B, Shalan AE. CdSe Quantum Dot Nanoparticles: Synthesis and Application in the Development of Molecularly Imprinted Polymer-Based Dual Optical Sensors. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mehdi Davoodi
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Fatemeh Davar
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Sudabe Mandani
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Ahmed Esmail Shalan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa48940, Spain
- Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo11421, Egypt
| |
Collapse
|
15
|
Kazemifard N, Ensafi AA, Dehkordi ZS. A review of the incorporation of QDs and imprinting technology in optical sensors – imprinting methods and sensing responses. NEW J CHEM 2021. [DOI: 10.1039/d1nj01104a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review aims to cover the simultaneous method of using molecularly imprinted technology and quantum dots (QDs) as well as its application in the field of optical sensors.
Collapse
Affiliation(s)
- Nafiseh Kazemifard
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Ali A. Ensafi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | | |
Collapse
|