1
|
Aceti DM, Filipov E, Angelova L, Sotelo L, Fontanot T, Yousefi P, Christiansen S, Leuchs G, Stanimirov S, Trifonov A, Buchvarov I, Daskalova A. Single-Step Process for Titanium Surface Micro- and Nano-Structuring and In Situ Silver Nanoparticles Formation by Ultra-Short Laser Patterning. MATERIALS 2022; 15:ma15134670. [PMID: 35806794 PMCID: PMC9267125 DOI: 10.3390/ma15134670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023]
Abstract
Ultra-short laser (USL)-induced surface structuring combined with nanoparticles synthesis by multiphoton photoreduction represents a novel single-step approach for commercially pure titanium (cp-Ti) surface enhancement. Such a combination leads to the formation of distinct topographical features covered by nanoparticles. The USL processing of cp-Ti in an aqueous solution of silver nitrate (AgNO3) induces the formation of micron-sized spikes surmounted by silver nanoparticles (AgNPs). The proposed approach combines the structuring and oxidation of the Ti surface and the synthesis of AgNPs in a one-step process, without the use of additional chemicals or a complex apparatus. Such a process is easy to implement, versatile and sustainable compared to alternative methodologies capable of obtaining comparable results. Antimicrobial surfaces on medical devices (e.g., surgical tools or implants), for which titanium is widely used, can be realized due to the simultaneous presence of AgNPs and micro/nano-structured surface topography. The processed surfaces were examined by means of a scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and Raman spectroscopy. The surface morphology and the oxidation, quality and quantity of AgNPs were analyzed in relation to process parameters (laser scanning speed and AgNO3 concentration), as well as the effect of AgNPs on the Raman signal of Titanium oxide.
Collapse
Affiliation(s)
- Dante Maria Aceti
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Emil Filipov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Liliya Angelova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Lamborghini Sotelo
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
- Innovations-Institut für Nanotechnologie und Korrelative Mikroskopie gGmbH Äußere Nürnberger Str. 62, 91301 Forchheim, Germany
| | - Tommaso Fontanot
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS Äußere Nürnberger Str. 62, 91301 Forchheim, Germany
| | - Peyman Yousefi
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS Äußere Nürnberger Str. 62, 91301 Forchheim, Germany
| | - Silke Christiansen
- Innovations-Institut für Nanotechnologie und Korrelative Mikroskopie gGmbH Äußere Nürnberger Str. 62, 91301 Forchheim, Germany
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS Äußere Nürnberger Str. 62, 91301 Forchheim, Germany
| | - Gerd Leuchs
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
- Max-Planck-Institut für die Physik des Lichts, 91058 Erlangen, Germany
| | - Stanislav Stanimirov
- Faculty of Chemistry and Pharmacy, Sofia University, 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Anton Trifonov
- Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Ivan Buchvarov
- Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Albena Daskalova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| |
Collapse
|
2
|
Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review. ENERGIES 2021. [DOI: 10.3390/en14051278] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gold nanoparticles (Au NPs) play a significant role in science and technology because of their unique size, shape, properties and broad range of potential applications. This review focuses on the various approaches employed for the synthesis, modification and functionalization of nanostructured Au. The potential catalytic applications and their enhancement upon modification of Au nanostructures have also been discussed in detail. The present analysis also offers brief summaries of the major Au nanomaterials synthetic procedures, such as hydrothermal, solvothermal, sol-gel, direct oxidation, chemical vapor deposition, sonochemical deposition, electrochemical deposition, microwave and laser pyrolysis. Among the various strategies used for improving the catalytic performance of nanostructured Au, the modification and functionalization of nanostructured Au produced better results. Therefore, various synthesis, modification and functionalization methods employed for better catalytic outcomes of nanostructured Au have been summarized in this review.
Collapse
|