1
|
Yusefi M, Shameli K, Jahangirian H, Teow SY, Afsah-Hejri L, Mohamad Sukri SNA, Kuča K. How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:3535-3575. [PMID: 37409027 PMCID: PMC10319292 DOI: 10.2147/ijn.s375964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kamyar Shameli
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | | | - Sin-Yeang Teow
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
| | - Leili Afsah-Hejri
- Department of Food Safety and Quality, School of Business, Science and Technology, Lakeland University Plymouth, WI 53073, USA
| | | | - Kamil Kuča
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
2
|
de Freitas CF, de Araújo Santos J, Pellosi DS, Caetano W, Batistela VR, Muniz EC. Recent advances of Pluronic-based copolymers functionalization in biomedical applications. BIOMATERIALS ADVANCES 2023; 151:213484. [PMID: 37276691 DOI: 10.1016/j.bioadv.2023.213484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
The design of polymeric biocompatible nanomaterials for biological and medical applications has received special attention in recent years. Among different polymers, the triblock type copolymers (EO)x(PO)y(EO)x or Pluronics® stand out due its favorable characteristics such as biocompatibility, low tissue adhesion, thermosensitivity, and structural capacity to produce different types of macro and nanostructures, e.g. micelles, vesicles, nanocapsules, nanospheres, and hydrogels. However, Pluronic itself is not the "magic bullet" and its functionalization via chemical synthesis following biologically oriented design rules is usually required aiming to improve its properties. Therefore, this paper presents some of the main publications on new methodologies for synthetic modifications and applications of Pluronic-based nanoconstructs in the biomedical field in the last 15 years. In general, the polymer modifications aim to improve physical-chemical properties related to the micellization process or physical entrapment of drug cargo, responsive stimuli, active targeting, thermosensitivity, gelling ability, and hydrogel formation. Among these applications, it can be highlighted the treatment of malignant neoplasms, infectious diseases, wound healing, cellular regeneration, and tissue engineering. Functionalized Pluronic has also been used for various purposes, including medical diagnosis, medical imaging, and even miniaturization, such as the creation of lab-on-a-chip devices. In this context, this review discusses the main scientific contributions to the designing, optimization, and improvement of covalently functionalized Pluronics aiming at new strategies focused on the multiple areas of the biomedical field.
Collapse
Affiliation(s)
- Camila Fabiano de Freitas
- Department of Chemistry, Federal University of Santa Catarina - UFSC, Eng. Agronômico Andrei Cristian Ferreira, s/n, Trindade, 88040-900 Florianópolis, Santa Catarina, Brazil.
| | - Jailson de Araújo Santos
- PhD Program in Materials Science and Engineering, Federal University of Piauí, Campus Petrônio Portela, Ininga, Teresina CEP 64049-550, Piauí, Brazil
| | - Diogo Silva Pellosi
- Laboratory of Hybrid Materials, Department of Chemistry, Federal University of São Paulo, Diadema, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, 5790 Colombo Avenue, 87020-900 Maringá, Paraná, Brazil
| | - Vagner Roberto Batistela
- Department of Pharmacology and Therapeutics, State University of Maringá, 5790 Colombo Avenue, 87020-900 Maringá, Paraná, Brazil
| | - Edvani Curti Muniz
- Department of Chemistry, State University of Maringá, 5790 Colombo Avenue, 87020-900 Maringá, Paraná, Brazil; Department of Chemistry, Federal University of Piauí, Campus Petronio Portella, Ininga, Teresina CEP 64049-550, Piauí, Brazil.
| |
Collapse
|
3
|
Green Synthesis of Functional CuFe2O4@TiO2@rGO Nanostructure for Magnetic Hyperthermia and Cytotoxicity of Human Breast Cancer Cell Line. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
4
|
Saeidi H, Mozaffari M, Ilbey S, Dutz S, Zahn D, Azimi G, Bock M. Effect of Europium Substitution on the Structural, Magnetic and Relaxivity Properties of Mn-Zn Ferrite Nanoparticles: A Dual-Mode MRI Contrast-Agent Candidate. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020331. [PMID: 36678084 PMCID: PMC9861161 DOI: 10.3390/nano13020331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 05/14/2023]
Abstract
Magnetic nanoparticles (MNPs) have been widely applied as magnetic resonance imaging (MRI) contrast agents. MNPs offer significant contrast improvements in MRI through their tunable relaxivities, but to apply them as clinical contrast agents effectively, they should exhibit a high saturation magnetization, good colloidal stability and sufficient biocompatibility. In this work, we present a detailed description of the synthesis and the characterizations of europium-substituted Mn-Zn ferrite (Mn0.6Zn0.4EuxFe2-xO4, x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10, and 0.15, herein named MZF for x = 0.00 and EuMZF for others). MNPs were synthesized by the coprecipitation method and subsequent hydrothermal treatment, coated with citric acid (CA) or pluronic F127 (PF-127) and finally characterized by X-ray Diffraction (XRD), Inductively Coupled Plasma (ICP), Vibrating Sample Magnetometry (VSM), Fourier-Transform Infrared (FTIR), Dynamic Light Scattering (DLS) and MRI Relaxometry at 3T methods. The XRD studies revealed that all main diffraction peaks are matched with the spinel structure very well, so they are nearly single phase. Furthermore, XRD study showed that, although there are no significant changes in lattice constants, crystallite sizes are affected by europium substitution significantly. Room-temperature magnetometry showed that, in addition to coercivity, both saturation and remnant magnetizations decrease with increasing europium substitution and coating with pluronic F127. FTIR study confirmed the presence of citric acid and poloxamer (pluronic F127) coatings on the surface of the nanoparticles. Relaxometry measurements illustrated that, although the europium-free sample is an excellent negative contrast agent with a high r2 relaxivity, it does not show a positive contrast enhancement as the concentration of nanoparticles increases. By increasing the europium to x = 0.15, r1 relaxivity increased significantly. On the contrary, europium substitution decreased r2 relaxivity due to a reduction in saturation magnetization. The ratio of r2/r1 decreased from 152 for the europium-free sample to 11.2 for x = 0.15, which indicates that Mn0.6Zn0.4Eu0.15Fe1.85O4 is a suitable candidate for dual-mode MRI contrast agent potentially. The samples with citric acid coating had higher r1 and lower r2 relaxivities than those of pluronic F127-coated samples.
Collapse
Affiliation(s)
- Hamidreza Saeidi
- Faculty of Physics, University of Isfahan, Isfahan 8174673441, Iran
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106 Freiburg, Germany
| | - Morteza Mozaffari
- Faculty of Physics, University of Isfahan, Isfahan 8174673441, Iran
- Correspondence: ; Tel.: +98-31-3793-4741
| | - Serhat Ilbey
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106 Freiburg, Germany
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhof-Straße 2, 98693 Ilmenau, Germany
| | - Diana Zahn
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhof-Straße 2, 98693 Ilmenau, Germany
| | - Gholamhassan Azimi
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106 Freiburg, Germany
| |
Collapse
|
5
|
Chemical Modification of Silk Fibroin through Serine Amino Acid Residues. MATERIALS 2022; 15:ma15134399. [PMID: 35806524 PMCID: PMC9267670 DOI: 10.3390/ma15134399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 12/12/2022]
Abstract
Silk fibroin (SF) is a natural protein polymer and promising biomaterial. Chemical modifications have attracted growing interest in expanding SF applications. However, the majority of amino acid residues in SF are non-reactive and most of the reactive ones are in the crystalline region. Herein, a modification was conducted to investigate the possibility of direct modification on the surface of natural SF by a reagent with a mild reactivity, the type and quantity of the residues involved in the reactions, and the structural changes upon modification. Infrared spectrum, 1H NMR, titration and amino acid analyses, X-ray diffraction, and hemolysis test were used to analyze the materials. The results showed that sulfonic acid groups were grafted onto SF and the reaction occurred mainly at serine residues through hydroxyl groups. In total, 0.0958 mmol/g of residues participated in the modification with a modification efficiency of 7.6%. Moreover, the crystallinity and the content of β-sheet structure in SF increased upon modification. The modified material had good blood-compatibility. In conclusion, surface modification on native SF through serine residues was practicable and had the advantage of increased β-sheet structure. This will provide an alternative way for the modification of fibroin for the desired application in the biomedical field.
Collapse
|
6
|
Topkaya SN, Karaca Açarı İ, Kaya HO, Özcan İ, Köytepe S, Cetin AE. Interaction of nickel ferrite nanoparticles with nucleic acids. Colloids Surf B Biointerfaces 2021; 211:112282. [PMID: 34915301 DOI: 10.1016/j.colsurfb.2021.112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 12/09/2022]
Abstract
In this article, we introduced an electrochemical biosensor employing graphite electrodes (GE) decorated with Nickel ferrite (NiFe2O4) nanoparticles for nucleic acid detection. NiFe2O4 nanoparticles in a narrow size distribution were synthesized with co-precipitation technique. Their chemical and crystallographic properties were characterized with FTIR and X-ray spectroscopies. Nanoparticle size distribution and hydrodynamic diameter were determined with particle size analyzer. Elemental content and purity of nanoparticles were analyzed with EDX analysis. Our analyses showed a diameter of ~10 nm for NiFe2O4 nanoparticles. Electrochemical properties of NiFe2O4 nanoparticles were examined with different analysis methods. Conductivity properties of NiFe2O4 nanoparticles were investigated with Cyclic Voltammetry (CV), which confirmed that nanoparticles on GE surface have a high surface area and conductivity. More importantly, in this article, the interactions between NiFe2O4 nanoparticles and double stranded DNA (dsDNA), single stranded DNA (ssDNA), and RNA were for the first time examined using Differential Pulse Voltammetry (DPV), CV, and Electrochemical Impedance Spectroscopy (EIS). Oxidation peak currents of NiFe2O4 nanoparticles and guanine bases of dsDNA, ssDNA, and RNA showed that NiFe2O4 nanoparticles effectively interacts with nucleic acids via an electrostatic mode.
Collapse
Affiliation(s)
- Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey.
| | - İdil Karaca Açarı
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Malatya Turgut Ozal University, Malatya, Turkey
| | - Hüseyin Oğuzhan Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - İmren Özcan
- Department of Chemistry, Faculty of Science, Inonu University, Malatya, Turkey
| | - Süleyman Köytepe
- Department of Chemistry, Faculty of Science, Inonu University, Malatya, Turkey
| | - Arif E Cetin
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
7
|
Gupta R, Sharma D. Therapeutic response differences between 2D and 3D tumor models of magnetic hyperthermia. NANOSCALE ADVANCES 2021; 3:3663-3680. [PMID: 36133021 PMCID: PMC9418625 DOI: 10.1039/d1na00224d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/05/2021] [Indexed: 05/02/2023]
Abstract
Magnetic hyperthermia-based cancer therapy (MHCT) has surfaced as one of the promising techniques for inaccessible solid tumors. It involves generation of localized heat in the tumor tissues on application of an alternating magnetic field in the presence of magnetic nanoparticles (MNPs). Unfortunately, lack of precise temperature and adequate MNP distribution at the tumor site under in vivo conditions has limited its application in the biomedical field. Evaluation of in vitro tumor models is an alternative for in vivo models. However, generally used in vitro two-dimensional (2D) models cannot mimic all the characteristics of a patient's tumor and hence, fail to establish or address the experimental variables and concerns. Considering that three-dimensional (3D) models have emerged as the best possible state to replicate the in vivo conditions successfully in the laboratory for most cell types, it is possible to conduct MHCT studies with higher clinical relevance for the analysis of the selection of magnetic parameters, MNP distribution, heat dissipation, action and acquired thermotolerance in cancer cells. In this review, various forms of 3D cultures have been considered and the successful implication of MHCT on them has been summarized, which includes tumor spheroids, and cultures grown in scaffolds, cell culture inserts and microfluidic devices. This review aims to summarize the contrast between 2D and 3D in vitro tumor models for pre-clinical MHCT studies. Furthermore, we have collated and discussed the usefulness, suitability, pros and cons of these tumor models. Even though numerous cell culture models have been established, further investigations on the new pre-clinical models and selection of best fit model for successful MHCT applications are still necessary to confer a better understanding for researchers.
Collapse
Affiliation(s)
- Ruby Gupta
- Institute of Nano Science and Technology Knowledge City, Sector 81 Mohali Punjab-140306 India
| | - Deepika Sharma
- Institute of Nano Science and Technology Knowledge City, Sector 81 Mohali Punjab-140306 India
| |
Collapse
|
8
|
Rational design of PEGylated magnetite grafted on graphene oxide with effective heating efficiency for magnetic hyperthermia application. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|