1
|
Bharti K, Jha A, Kumar M, Manjit, Satpute AP, Akhilesh, Tiwari V, Mishra B. Correlation of surface properties with dissolution behavior of amorphous solid dispersion of Riluzole and its pharmacodynamic evaluation. J Pharm Sci 2024:S0022-3549(24)00441-6. [PMID: 39414079 DOI: 10.1016/j.xphs.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
Formulation of amorphous solid dispersion (ASD) of any poorly water-soluble drug is among the most promising techniques to increase the dissolution profile of drug and hence its bioavailability. Various literatures give evidences of the role of drug-polymer interactions in the ASD systems, very little information is available about the surface properties of the drug molecule and their ASDs which contributes to a higher dissolution profile. Current work focuses on exploring the surface behavior of a poorly water-soluble drug Riluzole (RLZ) and its ASDs prepared with two highly hydrophilic polymers, polyacrylic acid (PAA), and polyvinylpyrrolidone vinyl acetate (PVP VA). Initial characterization using X-ray diffraction (XRD) revealed about the weight fraction of drug required to prepare a single-phase homogenous system with both the polymers. The saturation solubility and the dissolution studies showed an increase in RLZ solubility as well as the dissolution profile due to the presence of polymers. The role of polymers in changing the surface properties in terms of wettability and polarity were explored using contact angle method and X-ray photon spectroscopy (XPS). Additionally, the neuroprotective efficacy and dose dependent hepatotoxicity were also evaluated in male wistar rats. These studies confirmed the increase in the surface polarity and hence the enhanced ability of ASD formulations to interact with water. The in vivo studies indicated that at the current recommended dose the efficacy as well as toxicity is increased for the ASD formulation. Hence, this formulation can be given at a lower dose to achieve same therapeutic effect with lower toxicity.
Collapse
Affiliation(s)
- Kanchan Bharti
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Manish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Manjit
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Amol Parasram Satpute
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Akhilesh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| |
Collapse
|
2
|
Keshavarzi S, Momen G, Eberle P, Azimi Yancheshme A, Alvarez NJ, Jafari R. Exploiting intermediate wetting on superhydrophobic surfaces for efficient icing prevention. J Colloid Interface Sci 2024; 670:550-562. [PMID: 38776690 DOI: 10.1016/j.jcis.2024.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
HYPOTHESIS Superhydrophobic surfaces can effectively prevent the freezing of supercooled droplets in technological systems. Droplets on superhydrophobic surfaces commonly not only wet the top asperities (Cassie State), but also partially penetrate into microstructure due to surface properties, environment, and droplet impact occurring in real-world applications. Implications on ice nucleation can be expected and are little explored. It remains elusive how anti-icing surfaces can be designed to exploit intermediate wetting phenomena. EXPERIMENTS We utilized engineered micro-/nanostructures, specifically micropillars, to modulate the wetting fraction in the microstructure. The behavior of intermediate wetting with supercooling and resulting implications on ice nucleation delay when potential nucleation sites are formed in the microcavities were investigated using experimental, theoretical, and simulation components. FINDINGS The temperature-dependent wetting fraction in the microstructure increased at supercooled temperatures, partly activated by condensation in the microcavities. At -10/-20 °C, a critical wetting fraction led to maximum ice nucleation delays, with experimental results consistent with theoretical predictions. This critical wetting fraction minimized the effective contact area solid-to-liquid along the partially wetted microstructure. The study establishes physical relations between ice nucleation delays, geometrical surface parameters and wettability properties in the intermediate wetting regime, providing guidance for the design of ice resistant microstructured surfaces.
Collapse
Affiliation(s)
- Samaneh Keshavarzi
- Department of Applied Sciences, University of Québec in Chicoutimi, Chicoutimi, Québec, Canada
| | - Gelareh Momen
- Department of Applied Sciences, University of Québec in Chicoutimi, Chicoutimi, Québec, Canada.
| | - Patric Eberle
- Institute of Electrical Engineering, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Amir Azimi Yancheshme
- Chemical and Biological Engineering Department, Drexel University, Philadelphia, USA
| | - Nicolas J Alvarez
- Chemical and Biological Engineering Department, Drexel University, Philadelphia, USA
| | - Reza Jafari
- Department of Applied Sciences, University of Québec in Chicoutimi, Chicoutimi, Québec, Canada
| |
Collapse
|
3
|
Brebu M, Pamfil D, Stoica I, Aflori M, Voicu G, Stoleru E. Photo-crosslinked chitosan-gelatin xerogel-like coating onto "cold" plasma functionalized poly(lactic acid) film as cell culture support. Carbohydr Polym 2024; 339:122288. [PMID: 38823936 DOI: 10.1016/j.carbpol.2024.122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
This paper reports on biofunctionalisation of a poly(lactic acid) (PLA) film by surface activation through cold plasma treatment followed by coating with a chitosan-gelatin xerogel. The UV cross-linking of the xerogel precursor was simultaneously performed with the fixation onto the PLA support. This has a strong effect on surface properties, in terms of wettability, surface free energy, morphology and micromechanical features. The hydrophilic - hydrophobic character of the surface, determined by contact angle measurements, was tuned along the process, passing from moderate hydrophobic PLA to enhanced hydrophilic plasma activated surface, which favors coating adhesion, then to moderate hydrophobic chitosan-gelatin coating. The coating has a Lewis amphoteric surface, with a porous xerogel-like morphology, as revealed by scanning electron microscopy images. By riboflavin mediated UV cross-linking the chitosan-gelatin coating becomes high adhesive and with a more pronounced plasticity, as shown by AFM force-distance spectroscopy. Thus prepared surface-coated PLA supports were successfully tested for growth of dermal fibroblasts, which are known for their induction potential of chondrogenic cells, which is very important in cartilage tissue engineering.
Collapse
Affiliation(s)
- Mihai Brebu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania
| | - Daniela Pamfil
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania
| | - Iuliana Stoica
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania
| | - Magdalena Aflori
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania
| | - Geanina Voicu
- "Medical and Pharmaceutical BioNanoTechnologies" Laboratory (BioNanoMed) Institute of Cellular Biology and Pathology, "Nicolae Simionescu" 8, BP Hasdeu Street, 050568 Bucharest, Romania
| | - Elena Stoleru
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania.
| |
Collapse
|
4
|
Zhu R, Liu Q, He Y, Liang P. Rapid construction of nickel phyllosilicate with ultrathin layers and high performance for CO 2 methanation. J Colloid Interface Sci 2024; 668:352-365. [PMID: 38678890 DOI: 10.1016/j.jcis.2024.04.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
The traditional techniques for the synthesis of nickel phyllosilicates usually time-consuming and energy-intensive, which often lead to the formation of layers with excessive thickness due to uncontrolled crystal growth. In order to overcome these challenges, this work introduces a microwave-assisted synthesis strategy to facilitate the synthesis of Ni-phyllosilicate-based catalysts within an exceptionally short duration of only five minutes, attaining a peak temperature of merely 102 °C. To enhance the specific surface area and to increase the exposure of active sites, an investigation was conducted involving three surfactants. The employment of hexadecyl trimethyl ammonium bromide (CTAB) has yielded remarkable results, with an ultrahigh specific surface area reaching 535 m2 g-1 and an ultrathin lamellar thickness of 1.43 nm. The catalyst exhibited an impressive CO2 conversion of 81.7 % at 400 °C, 60 L g-1 h-1, 0.1 MPa. It also demonstrated a substantial turnover frequency for CO2 (TOFCO2) of 5.4 ± 0.1 × 10-2 s-1, alongside a relatively low activation energy (Ea) of 80.74 kJ·mol-1. Moreover, the catalyst maintained its high stability over a period of 100 h and displayed high resistance to sintering. To further elucidate growth temperature gradient of the catalyst and concentration gradient of the materials involved, COMSOL Multiphysics (COMSOL) simulations were effectively utilized. In conclusion, this work breaks the limitation associated with traditional, laborious synthesis methods for Ni-phyllosilicates, which can produce materials with high surface area and thin-layer characteristics.
Collapse
Affiliation(s)
- Ruixuan Zhu
- Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qing Liu
- Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Yan He
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China.
| | - Peng Liang
- Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
5
|
Lisowski D, Bielecki S, Cichosz S, Masek A. Ecologically Modified Leather of Bacterial Origin. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2783. [PMID: 38894045 PMCID: PMC11174029 DOI: 10.3390/ma17112783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
The research presented here is an attempt to develop an innovative and environmentally friendly material based on bacterial nanocellulose (BNC), which will be able to replace both animal skins and synthetic polymer products. Bacterial nanocellulose becomes stiff and brittle when dried, so attempts have been made to plasticise this material so that BNC can be used in industry. The research presented here focuses on the ecological modification of bacterial nanocellulose with vegetable oils such as rapeseed oil, linseed oil, and grape seed oil. The effect of compatibilisers of a natural origin on the plasticisation process of BNC, such as chlorophyll, curcumin, and L-glutamine, was also evaluated. BNC samples were modified with rapeseed, linseed, and grapeseed oils, as well as mixtures of each of these oils with the previously mentioned additives. The modification was carried out by passing the oil, or oil mixture, through the BNC using vacuum filtration, where the BNC acted as a filter. The following tests were performed to determine the effect of the modification on the BNC: FTIR spectroscopic analysis, contact angle measurements, and static mechanical analysis. As a result of the modification, the BNC was plasticised. Rapeseed oil proved to be the best for this purpose, with the help of which a material with good strength and elasticity was obtained.
Collapse
Affiliation(s)
- Dawid Lisowski
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland; (D.L.)
| | - Stanisław Bielecki
- International Center for Research on Innovative Biobased Materials, Lodz University of Technology, 2/22 Stefanowskiego Str., 90-537 Lodz, Poland;
| | - Stefan Cichosz
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland; (D.L.)
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland; (D.L.)
| |
Collapse
|
6
|
Yin Y, Zhao L, Lin S. CO 2-philicity to CO 2-phobicity Transition on Smooth and Stochastic Rough Cu-like Substrate Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38039439 DOI: 10.1021/acs.langmuir.3c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
CO2 on metal substrates is essential to CO2 liquefaction and transportation of CO2, yet the manipulation of the wettability of the CO2 and the elucidation of its underlying mechanism have not been fully achieved. Here, using molecular dynamics simulations, we report CO2 wetting characteristics on both smooth and stochastic rough Cu-like substrate surfaces. The results indicate that the apparent contact angle (CA) of the CO2 droplet on the smooth surface decreases from 180° to 0° as the CO2-solid characteristic interaction energy increases from 0.002 to 0.016 eV. In addition, the CAs become greater with increasing the density of surface asperities, regardless of the intrinsic surface wettability. This is attributed to the capillary drying-out of liquid CO2 molecules in gaps between surface asperities at the three-phase contact line of the droplet, which is usually overlooked in previous theoretical studies. Notably, the intrinsically CO2-philic surface transforms to the CO2-phobic due to an increase in the density of surface rugosity. Moreover, we verify the range of applicability of the CA prediction models concerning the nanoscale asperities. This work is beneficial for fully understanding the influence of nanoscale surface topography on CO2 wettability and shedding light on the design of functionalized and patterned surfaces to manipulate CO2 wettability.
Collapse
Affiliation(s)
- Yuming Yin
- National Engineering Research Center of Turbo-Generator Vibration, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lingling Zhao
- National Engineering Research Center of Turbo-Generator Vibration, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Shangchao Lin
- Institute of Engineering Thermophysics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|