1
|
Jahan MN, Alam MA, Rahman MM, Hoque SM, Ahmad H. Mesoporous Fe 3O 4/SiO 2/poly(2-carboxyethyl acrylate) composite polymer particles for pH-responsive loading and targeted release of bioactive molecules. RSC Adv 2024; 14:23560-23573. [PMID: 39071478 PMCID: PMC11276395 DOI: 10.1039/d4ra03160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
pH-responsive polymer microspheres undergoing reversible changes in their surface properties have been proved useful for drug delivery to targeted sites. This paper is aimed at preparing pH-responsive polymer-modified magnetic mesoporous SiO2 particles. First, mesoporous magnetic (Fe3O4) core-particles are prepared using a one-pot solvothermal method. Then, magnetic Fe3O4 particles are covered with a C[double bond, length as m-dash]C functional mesoporous SiO2 layer before seeded emulsion polymerization of 2-carboxyethyl acrylate (2-CEA). The composite polymer particles are named Fe3O4/SiO2/P(2-CEA). The average diameters of the Fe3O4 core and Fe3O4/SiO2/P(2-CEA) composite polymer particles are 414 and 595 nm, respectively. The mesoporous (pore diameter = 3.41 nm) structure of Fe3O4/SiO2/P(2-CEA) composite polymer particles is confirmed from Brunauer-Emmett-Teller (BET) surface analysis. The synthesized Fe3O4/SiO2/P(2-CEA) composite polymer exhibited pH-dependent changes in volume and surface charge density due to deprotonation of the carboxyl group under alkaline pH conditions. The change in the surface properties of Fe3O4/SiO2/P(2-CEA) composite polymer particles following pH change is confirmed from the pH-dependent sorption of cationic methylene blue (MB) and anionic methyl orange (MO) dye molecules. The opening of the pH-responsive P(2-CEA) gate valve at pH 10.0 allowed the release of loaded vancomycin up to 99% after 165 min and p-acetamido phenol (p-AP) up to 46% after 225 min. Comparatively, the amount of release is lower at pH 8.0 but still suitable for drug delivery applications. These results suggested that the mesoporous Fe3O4/SiO2 composite seed acted as a microcapsule, while P(2-CEA) functioned as a gate valve across the porous channel. The prepared composite polymer can therefore be useful for treating intestine/colon cancer, where the pH is comparatively alkaline.
Collapse
Affiliation(s)
- Most Nusrat Jahan
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
| | - Md Ashraful Alam
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
| | - Md Mahabur Rahman
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
- Department of Chemistry, Pabna University of Science and Technology 6600 Pabna Bangladesh
| | - S Manjura Hoque
- Materials Science Division, Bangladesh Atomic Energy Commission Dhaka Bangladesh
| | - Hasan Ahmad
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
| |
Collapse
|
2
|
Synthesis and characterization of Ag doped ZnO nanomaterial as an effective photocatalyst for photocatalytic degradation of Eriochrome Black T dye and antimicrobial agent. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
3
|
Saravanan K, Shanthi B, Ravichandran C, Venkatachalapathy B, Sathiyanarayanan KI, Rajendran S, Karthikeyan NS, Suresh R. Transformation of used aluminium foil food container into AlOOH nanoflakes with high catalytic activity in anionic azo dye reduction. ENVIRONMENTAL RESEARCH 2023; 218:114985. [PMID: 36460074 DOI: 10.1016/j.envres.2022.114985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Synthesis of aluminium-based nanomaterials from aluminium-waste has received huge attention in current scientific research. Herein, an attempt was made to convert aluminium foil food container into aluminium oxyhydroxide (AlOOH) nanoparticles by a precipitation method. X-ray diffraction (XRD), spectroscopic and electron microscopic studies were employed to characterize impure AlOOH (containing sodium chloride, NaCl) and pure AlOOH samples. The band gap (Eg) of AlOOH nanoparticles was found to be 4.5 eV. The catalytic potential of AlOOH samples was evaluated using reduction of methyl orange (MO) and Eriochrome black T (EBT) dyes. Impure AlOOH nanoparticles could reduce 99.8% of MO and EBT dye within 4 min and 3 min respectively. Effect of the AlOOH dosage and NaBH4 concentration on catalytic reduction was determined. Used aluminium foil food container-derived AlOOH nanoparticles will become a low-cost and sustainable catalyst in the catalytic treatment of azo dye contaminated waters.
Collapse
Affiliation(s)
| | | | - Cingaram Ravichandran
- Department of Chemistry, Easwari Engineering College, Chennai, 600089, Tamil Nadu, India
| | - Bakthavachalam Venkatachalapathy
- Department of Chemistry, Easwari Engineering College, Chennai, 600089, Tamil Nadu, India; Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Kulathu Iyer Sathiyanarayanan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT University), Vellore, 632014, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 600095, India; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India
| | | | - Ranganathan Suresh
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| |
Collapse
|
4
|
Sarker MZ, Rahman MM, Minami H, Suzuki T, Rahman MA, Khan A, Hoque SM, Ahmad H. Magnetite incorporated amine-functional SiO2 support for bimetallic Cu-Ni alloy nanoparticles produced highly effective nanocatalyst. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Photocatalytic Degradation of Eriochrome Black T Dye by ZnO Nanoparticles Using Multivariate Factorial, Kinetics and Isotherm Models. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Silica-Supported Assemblage of CuII Ions with Carbon Dots for Self-Boosting and Glutathione-Induced ROS Generation. COATINGS 2022. [DOI: 10.3390/coatings12010097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present work introduces coordinative binding of CuII ions with both amino-functionalized silica nanoparticles (SNs) and green-emitting carbon dots (CDs) as the pregrequisite for the CuII-assisted self-assembly of the CDs at the surface of the SNs. The produced composite SNs exhibit stable in time stimuli-responsive green fluorescence derived from the CuII-assisted assemblage of CDs. The fluorescence response of the composite SNs is sensitive to the complex formation with glutathione (GSH), enabling them to detect it with the lower limit of detection of 0.15 μM. The spin-trap-facilitated electron spin resonance technique indicated that the composite SNs are capable of self-boosting generation of ROS due to CuII→CuI reduction by carbon in low oxidation states as a part of the CDs. The intensity of the ESR signals is enhanced under the heating to 38 °C. The intensity is suppressed at the GSH concentration of 0.35 mM but is enhanced at 1.0 mM of glutathione, while it is suppressed once more at the highest intracellular concentration level of GSH (10 mM). These tendencies reveal the concentrations optimal for the scavenger or reductive potential of GSH. Flow cytometry and fluorescence and confocal microscopy methods revealed efficient cell internalization of SNs-NH2-CuII-CDs comparable with that of “free” CDs.
Collapse
|
7
|
Ali MS, Rahman MM, Hossain MK, Minami H, Rahman MM, Hoque SM, Alam MA, Ahmad H. Impact of mesoporous SiO 2 support for Ni/polypyrrole nanocomposite particles on their capacitive performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj04320c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The inclusion of mesoporous H2N-SiO2 support in H2N-SiO2/Ni/PPy nanocomposite particles improved their electrochemical performance, suitable for energy storage devices.
Collapse
Affiliation(s)
- M. Sagor Ali
- Research Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry, Rajshahi University, Rajshahi, 6205, Bangladesh
| | - M. Mahabur Rahman
- Research Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry, Rajshahi University, Rajshahi, 6205, Bangladesh
| | - M. Kawsar Hossain
- Research Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry, Rajshahi University, Rajshahi, 6205, Bangladesh
| | - Hideto Minami
- Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan
| | - M. Mahbubor Rahman
- Research Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry, Rajshahi University, Rajshahi, 6205, Bangladesh
| | - S. Manjura Hoque
- Materials Science Division, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - M. Ashraful Alam
- Research Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry, Rajshahi University, Rajshahi, 6205, Bangladesh
| | - Hasan Ahmad
- Research Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry, Rajshahi University, Rajshahi, 6205, Bangladesh
| |
Collapse
|
8
|
Sarker MZ, Rahman MM, Minami H, Suzuki T, Ahmad H. Amine functional silica–supported bimetallic Cu-Ni nanocatalyst and investigation of some typical reductions of aromatic nitro-substituents. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04910-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|