1
|
He Y, Yan S, He Y, Wu J, Gong X, Wu D, Liu X. Study of Low Temperature-Treated Aldolized Cellulose Nanocrystals for Enhancing Dye Separation and Self-Healing Properties of Graphene Oxide Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21171-21185. [PMID: 39344717 DOI: 10.1021/acs.langmuir.4c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Graphene oxide (GO) membranes with a 2D layered structure and nanoscale channels have great application prospects for dye wastewater purification. In this paper, ethylenediamine (EDA) was grafted onto the surface of GO nanosheets at 70 °C and aldolized cellulose nanocrystals (ICNC) were introduced to form EDA-ICNC hydrogel structures between the GO nanosheets by Schiff base reaction. The interlayer structure of the membrane was determined by adjusting the amount of ICNC added and the degree of aldolization, and the EGOICNC-24 membrane with the best performance was prepared. The water flux is not only 12 times higher than that of GO membrane but also has a good separation ability for dye molecules with a molecular weight around 300. Following the EDA-ICNC-24 hydrogel cross-linking process, the tensile strength of the EGOICNC-24 membrane exhibited a 173% increase relative to that of the GO membrane. Additionally, the dye rejection rate reached 97.16% after 130 h of dye separation. When the surface of the membrane was damaged, it was self-healed by regulating the repair temperature and adding a very small amount of ICNC to undergo a dynamic Schiff base reaction and a synergistic effect of hydrogen bonding.
Collapse
Affiliation(s)
- Yiling He
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
| | - Siming Yan
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
| | - Yi He
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
| | - Jingcheng Wu
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
| | - Xianmin Gong
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
| | - Daqing Wu
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
| | - Xuhui Liu
- Science and Technology Research Center of China Customs, Chaoyang District, Beijing 100026, P R of China
| |
Collapse
|
2
|
Moriyama N, Takenaka R, Nagasawa H, Kanezashi M, Tsuru T. Physicochemical Treatments of Graphene Oxide to Improve Water Vapor/Gas Separation Performance of Supported Laminar Membranes: Sonication and H 2O 2 Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8086-8097. [PMID: 38301232 DOI: 10.1021/acsami.3c16844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
We investigated the previously unexplored domain of water vapor/gas separation using graphene oxide (GO) membranes, expecting future applications, including gas dehumidifiers and superior humidity controllers. While the importance of manipulation of GO nanosheet size and surface chemistry in traditional water purification and gas separation has been acknowledged, their potential impact on water vapor/gas separation remained unexplored until now. We applied sonication and hydrogen peroxide treatments to GO water dispersions and systematically evaluated the size and surface chemistry of each GO nanosheet. Both treatments reduced the GO nanosheet size to shorten the diffusion length, which improved water permeance. In addition, hydrogen peroxide treatment improved the hydrophilicity of the nanosheet. Our novel findings demonstrate that optimization of GO nanosheet size and the increase in their hydrophilicity via hydrogen peroxide treatments for 5 h significantly enhance water permeance, leading to a remarkable water vapor permeance of 4.6 × 10-6 mol/(m2 s Pa) at 80 °C, a 3.1-fold improvement over original GO membranes, while maintaining a water vapor/nitrogen permeance ratio exceeding 10,000. These results not only provide important insights into the nature of water vapor/gas separation but also suggest innovative methods for optimizing the GO membrane structure.
Collapse
Affiliation(s)
- Norihiro Moriyama
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagami-yama, Higashi-Hiroshima 739-8527, Japan
| | - Risa Takenaka
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagami-yama, Higashi-Hiroshima 739-8527, Japan
| | - Hiroki Nagasawa
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagami-yama, Higashi-Hiroshima 739-8527, Japan
| | - Masakoto Kanezashi
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagami-yama, Higashi-Hiroshima 739-8527, Japan
| | - Toshinori Tsuru
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagami-yama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
3
|
Bayındır S, Aydoğan C, Denizli A. Preparation of chiral monoliths with new modulation of the monolith surface chemistry for the enantioseparation of chiral drugs by nano-liquid chromatography. J Chromatogr A 2024; 1713:464573. [PMID: 38101302 DOI: 10.1016/j.chroma.2023.464573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Here, we report the preparation and application of two new chiral monoliths for the enantioseparation of chiral drugs in nano-LC. Using 3‑chloro-2-hydroxypropylmethacrylate (HPMA-Cl, 2) as a precursor monomer, two different chiral monomers namely, Nα-Boc-Lys-HPMA (3A) and Nα-Fmoc-Lys-HPMA (3B) were synthesized and used for the preparation of chiral polymer monoliths. The first monolithic column (referred to as monolith I) was prepared by an in-situ polymerization of Nα-Boc-Lys-HPMA as the chiral monomer and ethylene dimethacrylate while the second monolithic column (referred to as monolith II) was prepared by an in-situ polymerization of Nα-Fmoc-Lys-HPMA as the chiral monomer and ethylene dimethacrylate as the crosslinker. Methanol and 1-propanol were used as the porogenic solvents. The prepared chiral monoliths were investigated for the enantioseparation of chiral drugs, including β-blockers (e.g., atenolol, propranolol, metoprolol) and anti-inflammatory drugs (e.g., ketoprofen, ibuprofen, flurbiprofen, naproxen, etodolac). The enantioseparation could be achieved via the formation of π-π interactions on the aromate-rich and aromate-poor chiral molecules while enantioseparation mechanism of chiral drugs included mostly π-π interactions and hydrogen bonding. Monolith II showed better enantioselectivity than Monolith I and the resolution values up to 2.12 were successfully achieved.
Collapse
Affiliation(s)
- Sinan Bayındır
- Department of Chemistry, Bingöl University, Bingöl, Türkiye
| | - Cemil Aydoğan
- Department of Chemistry, Bingöl University, Bingöl, Türkiye; Food Analysis and Research Laboratory, Bingöl University, Bingöl, Türkiye; Department of Food Engineering, Bingöl University, Bingöl, Türkiye.
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
4
|
Cheng Q, Ma Q, Pei H, He S, Wang R, Guo R, Liu N, Mo Z. Enantioseparation Membranes: Research Status, Challenges, and Trends. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300376. [PMID: 36794289 DOI: 10.1002/smll.202300376] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Indexed: 05/18/2023]
Abstract
The purity of enantiomers plays a critical role in human health and safety. Enantioseparation is an effective way and necessary process to obtain pure chiral compounds. Enantiomer membrane separation is a new chiral resolution technique, which has the potential for industrialization. This paper mainly summarizes the research status of enantioseparation membranes including membrane materials, preparation methods, factors affecting membrane properties, and separation mechanisms. In addition, the key problems and challenges to be solved in the research of enantioseparation membranes are analyzed. Last but not least, the future development trend of the chiral membrane is expected.
Collapse
Affiliation(s)
- Qingsong Cheng
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Qian Ma
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Simin He
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Rui Wang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
5
|
Jávor B, Vezse P, Golcs Á, Huszthy P, Tóth T. Enantiodiscriminating Lipophilic Liquid Membrane-Based Assay for High-Throughput Nanomolar Enantioenrichment of Chiral Building Blocks. MEMBRANES 2023; 13:94. [PMID: 36676901 PMCID: PMC9862411 DOI: 10.3390/membranes13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The reported optical resolution method was designed to support high-throughput enantioseparation of molecular building blocks obtained by automated small-scale synthetic methods. Lipophilic esters of common resolving agents were prepared and used as liquid membranes on the indifferent polymer surface of a microtiter assay. Chiral model compounds were enriched in one of the enantiomers starting from the aqueous solutions of their racemic mixture. Enantiodiscrimination was provided by forming diastereomeric coordination complexes of lipophilic enantiopure esters with the enantiomers of the chiral building blocks inside the liquid membranes. This enantiomeric recognition resulted in a greater distribution ratio of the preferred isomer in the membrane phase, thus the process enables a simultaneous enantioenrichment of the solutions outside the membrane. This paper reports a novel microplate-integrated stereoselective membrane enrichment technique satisfying the need for automatable enantioseparation on a subpreparative scale.
Collapse
Affiliation(s)
- Bálint Jávor
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Panna Vezse
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Ádám Golcs
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Péter Huszthy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Tünde Tóth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
- Centre for Energy Research, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| |
Collapse
|
6
|
Affiliation(s)
- Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Yu J, He Y, Wang Y, Zhang L, Hou R. Graphene oxide nanofiltration membrane for efficient dyes separation by hexagonal boron nitride nanosheets intercalation and polyethyleneimine surface modification. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Recent progress of membrane technology for chiral separation: A comprehensive review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Yu J, He Y, Wang Y, Li S, Tian S. Ethylenediamine-oxidized sodium alginate hydrogel cross-linked graphene oxide nanofiltration membrane with self-healing property for efficient dye separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Mikheev IV, Byvsheva SM, Sozarukova MM, Kottsov SY, Proskurnina EV, Proskurnin MA. High-Throughput Preparation of Uncontaminated Graphene-Oxide Aqueous Dispersions with Antioxidant Properties by Semi-Automated Diffusion Dialysis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4159. [PMID: 36500782 PMCID: PMC9739863 DOI: 10.3390/nano12234159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
A semi-automated diffusion-dialysis purification procedure is proposed for the preparation of uncontaminated graphene oxide (GO) aqueous dispersions. The purification process is integrated with analytical-signal processing to control the purification degree online by several channels: oxidation-reduction potential, conductivity, and absorbance. This approach reduces the amounts of reagents for chemical treatment during dialysis. The total transition metal (Mn and Ti) content was reduced to a sub-ppb level (assessed by slurry nebulization in inductively coupled plasma optical atomic emission spectroscopy). Purified aqueous GO samples possess good stability for about a year with a zeta-potential of ca. -40 mV and a lateral size of ca. sub-µm. Purified GO samples showed increased antioxidant properties (up to five times compared to initial samples according to chemiluminometry by superoxide-radical (O2-) generated in situ from xanthine and xanthine oxidase with the lucigenin probe) and significantly decreased peroxidase-like activity (assessed by the H2O2-L-012 system).
Collapse
Affiliation(s)
- Ivan V. Mikheev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sofiya M. Byvsheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Madina M. Sozarukova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 117901, Russia
| | - Sergey Yu. Kottsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 117901, Russia
| | | | | |
Collapse
|
11
|
Chen Y, Yang X. Molecular simulation of layered GO membranes with amorphous structure for heavy metal ions separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Feng F, Zhang S, Yang L, Li G, Xu W, Qu H, Zhang J, Dhinakaran MK, Xu C, Cheng J, Li H. Highly Chiral Selective Resolution in Pillar[6]arenes Functionalized Microchannel Membranes. Anal Chem 2022; 94:6065-6070. [PMID: 35384661 DOI: 10.1021/acs.analchem.2c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High flux microchannel membranes have the potential for large scale separations. However, it is prevented by poor enantioselectivity. Therefore, the development of a high-enantioselective microchannel membrane is of great importance for large scale chiral separations. In this work, chiral gold nanoparticles are incorporated into the microchannel membrane to astringe the large pores and improve the enantioselectivity. Here, the gold nanoparticles are functionalized by l-phenylalanine-derived pil-lararenes (l-Phe-P6@AuNPs) as the chiral receptor of R-phenylglycinol (R-PGC) over its enantiomer. This chiral Au NPs coated microchannel membrane (l-Phe-P6@AuNPs microchannel) shows a selectivity of 5.40 for R-PGC and a flux of 140.35 nmol·cm-2·h-1, where the enantioselectivity is improved, ensuring its flux. Compared with the enantioselectivity and flux of nanochannel membranes reported in literatures, the l-Phe-P6@AuNPs microchannel has the advantage for enantioselectivity and flux for chiral separation.
Collapse
Affiliation(s)
- Fudan Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Siyun Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lei Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiwei Xu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haonan Qu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | | | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jing Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haibing Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
13
|
Luo H, Bai X, Liu H, Qiu X, Chen J, Ji Y. β-Cyclodextrin covalent organic framework modified-cellulose acetate membranes for enantioseparation of chiral drugs. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Li B, Wang CG, Surat'man NE, Loh XJ, Li Z. Microscopically tuning the graphene oxide framework for membrane separations: a review. NANOSCALE ADVANCES 2021; 3:5265-5276. [PMID: 36132639 PMCID: PMC9417198 DOI: 10.1039/d1na00483b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/08/2021] [Indexed: 05/25/2023]
Abstract
Membrane-based separations have been widely applied in gas, water and organic solvent purifications to reduce energy consumption and minimize environmental pollution. In recent years, graphene oxide (GO) membranes have attracted increasing attention due to their self-assembly ability and excellent stability. In this review, publications within the last 3 years on microscopically tuning the GO framework are summarized and reviewed. Various materials, including organic molecules, polymers, inorganic particles, ions and 2D materials, have been deployed to intercalate with GO nanosheets. Due to the varied interlayer spacing and packing structure, the developed GO composites exhibit enhanced stabilities and separation performances. In addition, designing horizontal GO membranes and functionalizing GO nanosheets have also been reported to improve the performance. This review sheds light on the techniques to microscopically tune the GO framework and the resulting macroscopic changes in membrane properties and performances.
Collapse
Affiliation(s)
- Bofan Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way, Innovis #08-03 Singapore 138634
| | - Chen-Gang Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way, Innovis #08-03 Singapore 138634
| | - Nayli Erdeanna Surat'man
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way, Innovis #08-03 Singapore 138634
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way, Innovis #08-03 Singapore 138634
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way, Innovis #08-03 Singapore 138634
- Department of Materials Science and Engineering, National University of Singapore Singapore 117574 Singapore
| |
Collapse
|
15
|
Cui Y, An X, Zhang S, Tang Q, Lan H, Liu H, Qu J. Emerging graphitic carbon nitride-based membranes for water purification. WATER RESEARCH 2021; 200:117207. [PMID: 34020332 DOI: 10.1016/j.watres.2021.117207] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Membrane separation is a promising technology that can effectively remove various existing contaminants from water with low energy consumption and small carbon footprint. The critical issue of membrane technology development is to obtain a low-cost, stable, tunable and multifunctional material for membrane fabrication. Graphitic carbon nitride (g-C3N4) has emerged as a promising membrane material, owing to the unique structure characteristics and outstanding catalytic activity. This review paper outlined the advanced material strategies used to regulate the molecule structure of g-C3N4 for membrane separation. The presentative progresses on the applications of g-C3N4-based membranes for water purification have been elaborated. Essentially, we highlighted the innovation integration of physical separation, catalysis and energy conversion during water purification, which was of great importance for the sustainability of water treatment techniques. Finally, the continuing challenges of g-C3N4-based membranes and the possible breakthrough directions in the future research was prospected.
Collapse
Affiliation(s)
- Yuqi Cui
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shun Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qingwen Tang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|