1
|
Chenab KK, Malektaj H, Nadinlooie AAR, Mohammadi S, Zamani-Meymian MR. Intertumoral and intratumoral barriers as approaches for drug delivery and theranostics to solid tumors using stimuli-responsive materials. Mikrochim Acta 2024; 191:541. [PMID: 39150483 DOI: 10.1007/s00604-024-06583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The solid tumors provide a series of biological barriers in cellular microenvironment for designing drug delivery methods based on advanced stimuli-responsive materials. These intertumoral and intratumoral barriers consist of perforated endotheliums, tumor cell crowding, vascularity, lymphatic drainage blocking effect, extracellular matrix (ECM) proteins, hypoxia, and acidosis. Triggering opportunities have been drawn for solid tumor therapies based on single and dual stimuli-responsive drug delivery systems (DDSs) that not only improved drug targeting in deeper sites of the tumor microenvironments, but also facilitated the antitumor drug release efficiency. Single and dual stimuli-responsive materials which are known for their lowest side effects can be categorized in 17 main groups which involve to internal and external stimuli anticancer drug carriers in proportion to microenvironments of targeted solid tumors. Development of such drug carriers can circumvent barriers in clinical trial studies based on their superior capabilities in penetrating into more inaccessible sites of the tumor tissues. In recent designs, key characteristics of these DDSs such as fast response to intracellular and extracellular factors, effective cytotoxicity with minimum side effect, efficient permeability, and rate and location of drug release have been discussed as core concerns of designing paradigms of these materials.
Collapse
Affiliation(s)
- Karim Khanmohammadi Chenab
- Department of Chemistry, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
- Department of Physics, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220, Aalborg, Denmark
| | | | | | | |
Collapse
|
2
|
Guazzelli E, Pisano G, Turriani M, Biver T, Kriechbaum M, Uhlig F, Galli G, Martinelli E. The Nanostructured Self-Assembly and Thermoresponsiveness in Water of Amphiphilic Copolymers Carrying Oligoethylene Glycol and Polysiloxane Side Chains. Pharmaceutics 2023; 15:1703. [PMID: 37376151 DOI: 10.3390/pharmaceutics15061703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Amphiphilic copolymer self-assembly is a straightforward approach to obtain responsive micelles, nanoparticles, and vesicles that are particularly attractive for biomedicine, i.e., for the delivery of functional molecules. Here, amphiphilic copolymers of hydrophobic polysiloxane methacrylate and hydrophilic oligo (ethylene glycol) methyl ether methacrylate with different lengths of oxyethylenic side chains were synthesized via controlled RAFT radical polymerization and characterized both thermally and in solution. In particular, the thermoresponsive and self-assembling behavior of the water-soluble copolymers in water was investigated via complementary techniques such as light transmittance, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) measurements. All the copolymers synthesized were thermoresponsive, displaying a cloud point temperature (Tcp) strongly dependent on macromolecular parameters such as the length of the oligo(ethylene glycol) side chains and the content of the SiMA counits, as well as the concentration of the copolymer in water, which is consistent with a lower critical solution temperature (LCST)-type behavior. SAXS analysis revealed that the copolymers formed nanostructures in water below Tcp, whose dimension and shape depended on the content of the hydrophobic components in the copolymer. The hydrodynamic diameter (Dh) determined by DLS increased with the amount of SiMA and the associated morphology at higher SiMA contents was found to be pearl-necklace-micelle-like, composed of connected hydrophobic cores. These novel amphiphilic copolymers were able to modulate thermoresponsiveness in water in a wide range of temperatures, including the physiological temperature, as well as the dimension and shape of their nanostructured assemblies, simply by varying their chemical composition and the length of the hydrophilic side chains.
Collapse
Affiliation(s)
- Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy
| | - Giuseppe Pisano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy
| | - Marco Turriani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy
| | - Tarita Biver
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy
| | - Manfred Kriechbaum
- Institute for Inorganic Chemistry, Graz University of Technology, 8010 Graz, Austria
| | - Frank Uhlig
- Institute for Inorganic Chemistry, Graz University of Technology, 8010 Graz, Austria
| | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy
| |
Collapse
|
3
|
Mehmood S, Uddin MA, Yu H, Wang L, Amin BU, Haq F, Fahad S, Haroon M. Study on fully cross-linked poly(cyclotriphosphazene- co-epigallocatechin) nanospheres and their application as drug delivery carriers. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2175825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Sahid Mehmood
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Md Alim Uddin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Bilal Ul Amin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Shah Fahad
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Muhammad Haroon
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Neal CAP, León V, Quan MC, Chibambo NO, Calabrese MA. Tuning the thermodynamic, optical, and rheological properties of thermoresponsive polymer solutions via silica nanoparticle shape and concentration. J Colloid Interface Sci 2023; 629:878-895. [PMID: 36202031 PMCID: PMC10593120 DOI: 10.1016/j.jcis.2022.08.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
HYPOTHESIS The shape and quantity of hydrophilic silica nanoparticles (NPs) can be used to tune the microstructure, rheology, and stability of phase-separating polymer solutions. In thermoresponsive polymer systems, silica nanospheres are well-studied whereas anisotropic NPs have little literature precedent. Here, we hypothesize that NP shape and concentration lower the onset of rheological and turbidimetric transitions of aqueous poly(N-isopropyl acrylamide) (PNIPAM) solutions. EXPERIMENTS Differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), turbidimetry, and oscillatory rheology are utilized to examine interactions between NPs, PNIPAM, and water and to track changes in phase separation and rheological properties due to NP concentration and shape. FINDINGS NP addition reduces phase separation enthalpy due to PNIPAM-NP hydrogen bonding interactions, the degree to which depends on polymer content. While NP addition minorly impacts thermodynamic and optical properties, rheological transitions and associated rheological properties are dramatically altered with increasing temperature, and depend on NP quantity, shape, and polymer molecular weight. Thus NP content and shape can be used to finely tune transition temperatures and mechanical properties for applications in stimuli-responsive materials.
Collapse
Affiliation(s)
- Christopher A P Neal
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, Minneapolis, MN 55455, United States
| | - Valeria León
- Mechanical Engineering Department, The University of Texas Rio Grande Valley, Edinburg, TX 78539, United States
| | - Michelle C Quan
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, Minneapolis, MN 55455, United States
| | - Nondumiso O Chibambo
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, Minneapolis, MN 55455, United States
| | - Michelle A Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, Minneapolis, MN 55455, United States.
| |
Collapse
|
5
|
Mehmood S, Uddin MA, Yu H, Wang L, Amin BU, Haq F, Fahad S, Haroon M. One‐Pot Synthesis of Size‐Controlled Poly(cyclotriphosphazene‐
co
‐hesperetin) Microspheres and Their Properties as Drug Delivery Carriers. ChemistrySelect 2022. [DOI: 10.1002/slct.202200273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sahid Mehmood
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Md Alim Uddin
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Bilal Ul Amin
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Shah Fahad
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Muhammad Haroon
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| |
Collapse
|
6
|
Lv D, Liu Q, Wang C, Wu H, Zhao N, Yin B, Wei X, Li J. Imparting pH and temperature dual-responsiveness in a micellar solution of cationic surfactants by introducing a hydrotrope. SOFT MATTER 2022; 18:5249-5260. [PMID: 35775594 DOI: 10.1039/d2sm00509c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the recent years, intelligent, multi-responsive micelles have received considerable attention due to their promising application in a variety of fields, including biomedical technology, drug delivery, separation, and catalysis. However, the design of such systems with controlled self-assembly is challenging both experimentally and theoretically and is still in the nascent stage. In this study, a novel dual-stimuli triggered wormlike micellar solution is prepared by mixing cationic surfactants 3-hexadecyloxy-2-hydroxypropyltrimethylammonium bromide (R16HTAB) and sodium hydrogen phthalate (SHP). The viscoelasticity, aggregate morphology, and pH- and thermo-responsive behavior of the micellar solution are examined by rheological measurements, cryogenic-transmission electron microscopy (cryo-TEM), nuclear magnetic resonance (1H NMR) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The dual-sensitive fluid can be switched between a water-like state and a gel-like state by adjusting the pH and temperature. The variations in the flowing behavior are ascribed to the microstructural transition between wormlike micelles, short cylindrical micelles, and spherical micelles. Furthermore, based on the experimental results, dual-responsive behavior of the mixed solution is attributed to the different binding modes between SHP and the surfactant with the variation in the pH and temperature. We hope that the proposed system provides a new route for developing multi-stimuli-responsive materials that are capable of adapting to local environmental variations.
Collapse
Affiliation(s)
- Dongmei Lv
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China.
| | - Qi Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China.
| | - Chenyong Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China.
| | - Huijun Wu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China.
| | - Na Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China.
| | - Baolin Yin
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China.
| | - Xilian Wei
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China.
| | - Jing Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China.
| |
Collapse
|
7
|
Cross-Linked Poly(cyclotriphosphazene-co-phloretin) Microspheres and Their Application for Controlled Drug Delivery. Macromol Res 2022. [DOI: 10.1007/s13233-022-0066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Study on synthesis of cross-linked poly(cyclotriphosphazene-co-luteolin) nanospheres and their properties for controlled drug delivery. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Li J, Liu Q, Jin R, Yin B, Wei X, Lv D. Endowing cationic surfactant micellar solution with pH, light and temperature triple-response characteristics by introducing 4-(phenylazo)-benzoic acid. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Uddin MA, Yu H, Wang L, Amin BU, Mehmood S, Liang R, Haq F, Hu J, Xu J. Dynamics in Controllable Stimuli-Responsive Self-Assembly of Polymer Vesicles with Stable Radical Functionality. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61693-61706. [PMID: 34913332 DOI: 10.1021/acsami.1c21760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembled polymer vesicles have emerged as exciting and promising materials for their potential application in drug delivery, but the dynamics of stimuli-responsive polymers in these areas with pendant functionality in order to understand the structure-property relationship under different physicochemical conditions is still open to discussion. In this work, nitroxide radical-containing copolymers were synthesized and utilized to investigate local dynamics in their vesicular assemblies. Herein, electron paramagnetic resonance (EPR) spectroscopy was applied to reveal the smart supramolecular vesicular structure and polymer chain dynamics in stimuli-responsive controlled assemblies by considering molecular-level interactions. These interactions and dynamics were dependent on the microenvironment of the assemblies, which might be affected by physicochemical parameters such as radical concentration, pH, redox agent, polarity, and viscosity. These observations help to accomplish quantitative insights into the stimuli-responsive colloidal vesicular assemblies. The vesicles were used as an anticancer drug carrier, which showed high drug loading efficiency (63.65%). The reduction-responsive prompt disassembly accelerated the release. Furthermore, the biocompatibility and anticancer activity were examined by cellular experiments against normal fibroblasts (L929) and human cervical cancer (HeLa) cell lines, respectively. The results demonstrate that this effort provides an easy strategy for designing controllable stimuli-responsive polymer nanosystems which promotes their promising application in cancer treatment.
Collapse
Affiliation(s)
- Md Alim Uddin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang P. R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang P. R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang P. R. China
| | - Bilal Ul Amin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang P. R. China
| | - Sahid Mehmood
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang P. R. China
| | - Ruixue Liang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang P. R. China
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang P. R. China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Jinming Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| |
Collapse
|
11
|
Yu J, Zhang X, Pei Z, Shuai Q. A triple-stimulus responsive melanin-based nanoplatform with an aggregation-induced emission-active photosensitiser for imaging-guided targeted synergistic phototherapy/hypoxia-activated chemotherapy. J Mater Chem B 2021; 9:9142-9152. [PMID: 34693960 DOI: 10.1039/d1tb01657a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multimodal synergistic therapy has gained increasing attention in cancer treatment to overcome the limitations of monotherapy and achieve high anticancer efficacy. In this study, a synergistic phototherapy and hypoxia-activated chemotherapy nanoplatform based on natural melanin nanoparticles (MPs) loaded with the bioreduction prodrug tirapazamine (TPZ) and decorated with hyaluronic acid (HA) was developed. A self-reporting aggregation-induced emission (AIE)-active photosensitizer (PS) (BATTMN) was linked to the prepared nanoparticles by boronate ester bonds. The MPs and BATTMN-HA played roles as quenchers for PS and cancer targeting/photodynamic moieties, respectively. As a pH sensitive bond, the borate ester bonds between HA and BATTMN are hydrolysed in the acidic cancer environment, thereby separating BATTMN from the nanoparticles and leading to the induction of fluorescence for imaging-guided synergistic phototherapy/hypoxia-activated chemotherapy under dual irradiation. TPZ can be released upon activation by pH, near-infrared (NIR) and hyaluronidase (Hyal). Particularly, the hypoxia-dependent cytotoxicity of TPZ was amplified by oxygen consumption in the tumor intracellular environment induced by the AIE-active PS in photodynamic therapy (PDT). The nanoparticles developed in our research showed favorable photothermal conversion efficiency (η = 37%), desired cytocompatibility, and excellent synergistic therapeutic efficacy. The proposed nanoplatform not only extends the application scope of melanin materials with AIE-active PSs, but also offers useful insights into developing multistimulus as well as multimodal synergistic tumor treatment.
Collapse
Affiliation(s)
- Jie Yu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| | - Xiaoli Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| | - Qi Shuai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| |
Collapse
|