1
|
Fedorenko S, Farvaeva D, Stepanov A, Bochkova O, Kholin K, Nizameev I, Drobyshev S, Gerasimova T, Voloshina A, Fanizza E, Depalo N, Sibgatullina G, Samigullin D, Petrov K, Gubaidullin A, Mustafina A. Tricks for organic-capped Cu2-xS nanoparticles encapsulation into silica nanocomposites co-doped with red emitting luminophore for NIR activated-photothermal/chemodynamic therapy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
2
|
Fedorenko SV, Stepanov AS, Bochkova OD, Mustafina AR. Main Processes Facilitating the Formation of Composite Silica-Based Nanocolloids Doped with Complexes of d- and f-Metals and Inorganic Nanoparticles. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Zhang H, Ma W, Wang Z, Wu X, Zhang H, Fang W, Yan R, Jin Y. Self-Supply Oxygen ROS Reactor via Fenton-like Reaction and Modulating Glutathione for Amplified Cancer Therapy Effect. NANOMATERIALS 2022; 12:nano12142509. [PMID: 35889731 PMCID: PMC9319594 DOI: 10.3390/nano12142509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive oxidant molecules that can kill cancer cells through irreversible damage to biomacromolecules. ROS-mediated cancer therapies, such as chemodynamic (CDT) and photodynamic therapy (PDT), are often limited by the hypoxia tumor microenvironment (TME) with high glutathione (GSH) level. This paper reported the preparation, characterization, in vitro and in vivo antitumor bioactivity of a meso-tetra(4-carboxyphenyl)porphine (TCPP)-based therapeutic nanoplatform (CMMFTP) to overcome the limitations of TME. Using Cu2+ as the central ion and TCPP as the ligand, the 2D metal-organic framework Cu-TCPP was synthesized by the solvothermal method, then CMMFTP was prepared by modifying MnO2, folic acid (FA), triphenylphosphine (TPP), and poly (allylamine hydrochloride) (PAH) on the surface of Cu-TCPP MOFs. CMMFTP was designed as a self-oxygenating ROS nanoreactor based on the PDT process of TCPP MOFs and the CDT process by Cu(II) and MnO2 components (mainly through Fenton-like reaction). The in vitro assay suggested CMMFTP caused a 96% lethality rate against Hela cells (MTT analysis) in specific response to TME stimulation. Moreover, the Cu(II) and MnO2 in CMMFTP efficiently depleted the glutathione (80%) in tumor cells and consequently amplified ROS levels to improve CDT/PDT effects. The FA-induced tumor targeting and TPP-induced mitochondria targeting further enhanced the antitumor activity. Therefore, the nanoreactor based on dual targeting and self-oxygenation-enhanced ROS mechanism provided a new strategy for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Wen Fang
- Correspondence: (W.F.); (R.Y.); (Y.J.)
| | - Rui Yan
- Correspondence: (W.F.); (R.Y.); (Y.J.)
| | | |
Collapse
|
4
|
Saengsrichan A, Saikate C, Silasana P, Khemthong P, Wanmolee W, Phanthasri J, Youngjan S, Posoknistakul P, Ratchahat S, Laosiripojana N, Wu KCW, Sakdaronnarong C. The Role of N and S Doping on Photoluminescent Characteristics of Carbon Dots from Palm Bunches for Fluorimetric Sensing of Fe3+ Ion. Int J Mol Sci 2022; 23:ijms23095001. [PMID: 35563393 PMCID: PMC9100793 DOI: 10.3390/ijms23095001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
This work aims to enhance the value of palm empty fruit bunches (EFBs), an abundant residue from the palm oil industry, as a precursor for the synthesis of luminescent carbon dots (CDs). The mechanism of fIuorimetric sensing using carbon dots for either enhancing or quenching photoluminescence properties when binding with analytes is useful for the detection of ultra-low amounts of analytes. This study revealed that EFB-derived CDs via hydrothermal synthesis exceptionally exhibited luminescence properties. In addition, surface modification for specific binding to a target molecule substantially augmented their PL characteristics. Among the different nitrogen and sulfur (N and S) doping agents used, including urea (U), sulfate (S), p-phenylenediamine (P), and sodium thiosulfate (TS), the results showed that PTS-CDs from the co-doping of p-phenylenediamine and sodium thiosulfate exhibited the highest PL properties. From this study on the fluorimetric sensing of several metal ions, PTS-CDs could effectively detect Fe3+ with the highest selectivity by fluorescence quenching to 79.1% at a limit of detection (LOD) of 0.1 µmol L−1. The PL quenching of PTS-CDs was linearly correlated with the wide range of Fe3+ concentration, ranging from 5 to 400 µmol L−1 (R2 = 0.9933).
Collapse
Affiliation(s)
- Aphinan Saengsrichan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
| | - Chaiwat Saikate
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
| | - Peeranut Silasana
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.K.); (W.W.); (J.P.); (S.Y.)
| | - Wanwitoo Wanmolee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.K.); (W.W.); (J.P.); (S.Y.)
| | - Jakkapop Phanthasri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.K.); (W.W.); (J.P.); (S.Y.)
| | - Saran Youngjan
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.K.); (W.W.); (J.P.); (S.Y.)
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
| | - Sakhon Ratchahat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mot, Thung Khru, Bangkok 10140, Thailand;
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei 10617, Taiwan;
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand; (A.S.); (C.S.); (P.S.); (P.P.); (S.R.)
- Correspondence: ; Tel.: +66-28892138 (ext. 6101-2); Fax: +662-4419731
| |
Collapse
|
5
|
Poly(styrene-co-maleic Acid) Micelle of Photosensitizers for Targeted Photodynamic Therapy, Exhibits Prolonged Singlet Oxygen Generating Capacity and Superior Intracellular Uptake. J Pers Med 2022; 12:jpm12030493. [PMID: 35330492 PMCID: PMC8951206 DOI: 10.3390/jpm12030493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Targeted therapy by using nanomedicines based on the enhanced permeability and retention (EPR) effect is becoming a promising anticancer strategy. Many nano-designed photosensitizers (PSs) for photodynamic therapy (PDT) have been developed which show superior therapeutic potentials than free PS. To further understand the advantages of nano-designed PS, in this study, we used styrene-co-maleyl telomer (SMA) as a polymer platform to prepare a micellar type of PS with two well-characterized PSs—rose bengal (RB) and methylene blue (MB)—and evaluated the outmatching benefits of SMA-PS micelles, especially focusing on the singlet oxygen (1O2) generation capacity and intracellular uptake profiles. In aqueous solutions, SMA-PS self-assembles to form micelles by non-covalent interactions between PS and SMA. SMA-PS micelles showed discrete distributions by dynamic light scattering having a mean particle size of 18–30 nm depending on the types of SMA and different PSs. The hydrodynamic size of SMA-PS was evaluated by Sephadex chromatography and it found to be 30–50 kDa. In the presence of human serum albumin, the sizes of SMA-PS remarkably increased, suggesting the albumin-binding property. 1O2 generation from the SMA-PS micelle was determined by electron spin resonance, in which the SMA-PS micelle showed comparatively more photo-stable, and consequently a more durable and constant, 1O2 generation capability than free PS. Moreover, intracellular uptake of SMA-PS micelles was extensively faster and higher than free PS, especially in tumor cells. Taken together, SMA-PS micelles appear highly advantageous for photodynamic therapy in addition to its capacity in utilizing the EPR effect for tumor targeted delivery.
Collapse
|
6
|
Tsai H, Chang K, Lee W, Fuh CB. Rapid Preparation of Fluorescent Carbon Dots from Pine Needles for Chemical Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:66. [PMID: 35010016 PMCID: PMC8746989 DOI: 10.3390/nano12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Fluorescent carbon dots with blue, green, and red emissions were rapidly prepared from modified pine needles through microwave irradiation in a one-pot reaction. The fluorescence intensity and emission versatility for a carbon source were experimentally optimized. The reaction times were under 10 min and the reaction temperatures were lower than 220 °C. Potential applications of magnetic fluorescence-linked immunoassays of carcinoembryonic antigen (CEA) and tumor necrosis factor-alpha (TNF-α) were presented. The detection limits for CEA and TNF-α (3.1 and 2.8 pg mL-1, respectively) are lower than those presented in other reports, whereas the linear ranges for CEA and TNF-α (9 pg mL-1 to 18 ng mL-1 and 8.5 pg mL-1 to 17 ng mL-1, respectively) are wider than those presented in other reports. Magnetic immunoassays with fluorescent CDs prepared from pine needles can enable rapid, sensitive, and selective detections for biochemical analysis.
Collapse
Affiliation(s)
- Hweiyan Tsai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Kaiying Chang
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 545, Taiwan; (K.C.); (W.L.)
| | - Wanshing Lee
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 545, Taiwan; (K.C.); (W.L.)
| | - C. Bor Fuh
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 545, Taiwan; (K.C.); (W.L.)
| |
Collapse
|