1
|
Archer RJ, Ebbens SJ, Kubodera Y, Matsuo M, Nomura SIM. Menthyl acetate powered self-propelled Janus sponge Marangoni motors with self-maintaining surface tension gradients and active mixing. J Colloid Interface Sci 2025; 678:11-19. [PMID: 39236350 DOI: 10.1016/j.jcis.2024.08.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
HYPOTHESIS Small scale Marangoni motors, which self-generate motion by inducing surface tension gradients on water interfaces through release of surface-active "fuels", have recently been proposed as self-powered mixing devices for low volume fluids. Such devices however, often show self-limiting lifespans due to the rapid saturation of surface-active agents. A potential solution to this is the use volatile surface-active agents which do not persist in their environment. Here we investigate menthyl acetate (MA) as a safe, inexpensive and non-persistent fuel for Marangoni motors. EXPERIMENTS MA was loaded asymmetrically into millimeter scale silicone sponges. Menthyl acetate reacts slowly with water to produce the volatile surface-active menthol, which induces surface tension gradients across the sponge to drive motion by the Marangoni effect. Videos were taken and trajectories determined by custom software. Mixing was assessed by the ability of Marangoni motors to homogenize milliliter scale aqueous solutions containing colloidal sediments. FINDINGS Marangoni motors, loaded with asymmetric "Janus" distributions of menthyl acetate show velocities and rotational speeds up to 30 mm s-1 and 500 RPM respectively, with their functional lifetimes scaling linearly with fuel volume. We show these devices are capable of enhanced mixing of solutions at orders of magnitude greater rates than diffusion alone.
Collapse
Affiliation(s)
- Richard J Archer
- Molecular Robotics Laboratory, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Stephen J Ebbens
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Yujin Kubodera
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Muneyuki Matsuo
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Graduate School of Arts and Sciences, The University of Tokyo, Meguro City, Tokyo 153-0041, Japan.
| | - Shin-Ichiro M Nomura
- Molecular Robotics Laboratory, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
| |
Collapse
|
2
|
Kudryavtseva V, Sukhorukov GB. Features of Anisotropic Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307675. [PMID: 38158786 DOI: 10.1002/adma.202307675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Natural materials are anisotropic. Delivery systems occurring in nature, such as viruses, blood cells, pollen, and many others, do have anisotropy, while delivery systems made artificially are mostly isotropic. There is apparent complexity in engineering anisotropic particles or capsules with micron and submicron sizes. Nevertheless, some promising examples of how to fabricate particles with anisotropic shapes or having anisotropic chemical and/or physical properties are developed. Anisotropy of particles, once they face biological systems, influences their behavior. Internalization by the cells, flow in the bloodstream, biodistribution over organs and tissues, directed release, and toxicity of particles regardless of the same chemistry are all reported to be factors of anisotropy of delivery systems. Here, the current methods are reviewed to introduce anisotropy to particles or capsules, including loading with various therapeutic cargo, variable physical properties primarily by anisotropic magnetic properties, controlling directional motion, and making Janus particles. The advantages of combining different anisotropy in one entity for delivery and common problems and limitations for fabrication are under discussion.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| |
Collapse
|
3
|
Ullah I, Farooq AS, Naz I, Ahmad W, Ullah H, Sehar S, Nawaz A. Fabrication of Polymeric Hydrogels Containing Esomeprazole for Oral Delivery: In Vitro and In Vivo Pharmacokinetic Characterization. Polymers (Basel) 2023; 15:polym15071798. [PMID: 37050412 PMCID: PMC10097100 DOI: 10.3390/polym15071798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Hydrogel is one of the most interesting and excellent candidates for oral drug delivery. The current study focuses on formulation development of hydrogels for controlled oral delivery of esomeprazole. The hydrogels were prepared by solution casting method by dissolving polymers in Polyvinyl alcohol (PVA) solution. Calcium alginate, Hydroxyl propyl methylcellulose (HPMC), acrylic acid and chondroitin sulfate were used in the preparation of hydrogels. Fourier transform infrared (FTIR) analysis showed no incompatibilities between drug and excipients used in the preparation of formulations. The hydrogels were characterized for size and surface morphology. Drug encapsulation efficiency was measured by Ultraviolet-visible (UV-VIS) spectroscopy. In vitro release studies were carried out using dissolution apparatus. The formulated hydrogels were then compared with the marketed product in vivo using rabbits. The result indicates that prepared hydrogels have a uniform size with a porous surface. The esomeprazole encapsulation efficiency of the prepared hydrogels was found to be 83.1 ± 2.16%. The esomeprazole-loaded hydrogel formulations showed optimum and Pharmacopeial acceptable range swelling behavior. The release of esomeprazole is controlled for 24 h (85.43 ± 0.32% in 24 h). The swelling and release of drug results make the prepared hydrogels a potential candidate for the controlled delivery of esomeprazole. The release of the drug from prepared hydrogel followed the super case transport-2 mechanism. The in vivo studies showed that prepared hydrogel formulations showed controlled and prolonged release of esomeprazole as compared to drug solution and marketed product. The formulations were kept for stability studies; there was no significant change observed in physical parameters, i.e., (appearance, color change and grittiness) at 40 °C ± 2/75% ± RH. There was a negligible difference in the drug content observed after the stability study suggested that all the formulations are stable under the given conditions for 60 days. The current study provides a valuable perspective on the controlled release profile of Hydroxyl propyl methylcellulose (HPMC) and calcium alginate-based esomeprazole hydrogels.
Collapse
Affiliation(s)
- Irshad Ullah
- Department of Pharmacy, University of Swabi, Swabi 94640, Khyber Pakhtunkhwa, Pakistan
| | - Ayesha Shuja Farooq
- Department of Biochemistry, Science Unit, Deanship of Educational Services, Qassim University, Buraidah 51452, Saudi Arabia
| | - Iffat Naz
- Department of Biology, Science Unit, Deanship of Educational Services, Qassim University, Buraydah 51452, Saudi Arabia
| | - Waqar Ahmad
- Department of Pharmacy, University of Swabi, Swabi 94640, Khyber Pakhtunkhwa, Pakistan
| | - Hidayat Ullah
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29220, Khyber Pakhtunkhwa, Pakistan
| | - Shama Sehar
- Department of Environmental Engineering, College of Engineering, University of Technology, Salmabad 18041, Bahrain
| | - Asif Nawaz
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
4
|
Zhao Z, Si T, Kozelskaya AI, Akimchenko IO, Tverdokhlebov SI, Rutkowski S, Frueh J. Biodegradable magnesium fuel-based Janus micromotors with surfactant induced motion direction reversal. Colloids Surf B Biointerfaces 2022; 218:112780. [PMID: 35988310 DOI: 10.1016/j.colsurfb.2022.112780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
The speed and motion directionality of bubble-propelled micromotors is dependent on bubble lifetime, bubble formation frequency and bubble stabilization. Absence and presence of bubble stabilizing agents should significantly influence speed and propulsion pattern of a micromotor, especially for fast-diffusing molecules like hydrogen. This study demonstrates a fully biodegradable Janus structured micromotor, propelled by hydrogen bubbles generated by the chemical reaction between hydrochloric acid and magnesium. Six different concentrations of hydrochloric acid and five different concentrations of the surfactant Triton X-100 were tested, which also cover the critical micelle concentration at a pH corresponding to an empty stomach. The Janus micromotor reverses its propulsion direction depending on the availability and concentration of a surfactant. Upon surfactant-free condition, the Janus micromotor is propelled by bubble cavitation, causing the micromotor to be pulled at high speed for short time intervals into the direction of the imploding bubble and thus backwards. In case of available surfactant above the critical micelle concentration, the Janus micromotor is pushed forward by the generated bubbles, which emerge at high frequency and form a bubble trail. The finding of the propulsion direction reversal effect demonstrates the importance to investigate the motion properties of artificial micromotors in a variety of different environments prior to application, especially with surfactants, since biological media often contain large amounts of surface-active components.
Collapse
Affiliation(s)
- Zewei Zhao
- Faculty of Medicine and Health, Ministry of Education, Harbin Institute of Technology, XiDaZhi Street 92, Mingde Building, Harbin 150001, PR China
| | - Tieyan Si
- School of Physics, Yikuang Street 2, 2H Harbin Institute of Technology, Harbin 150080, PR China
| | - Anna I Kozelskaya
- Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation.
| | - Igor O Akimchenko
- Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | | | - Sven Rutkowski
- Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation.
| | - Johannes Frueh
- Faculty of Medicine and Health, Ministry of Education, Harbin Institute of Technology, XiDaZhi Street 92, Mingde Building, Harbin 150001, PR China; Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation.
| |
Collapse
|
5
|
Kudryavtseva V, Bukatin A, Vyacheslavova E, Gould D, Sukhorukov GB. Printed asymmetric microcapsules: Facile loading and multiple stimuli-responsiveness. BIOMATERIALS ADVANCES 2022; 136:212762. [PMID: 35929328 DOI: 10.1016/j.bioadv.2022.212762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 06/15/2023]
Abstract
Engineering of colloidal particles and capsules despite substantial progress is still facing a number of unsolved issues including low loading capacity, non-uniform size and shape of carriers, tailoring different functionalities and versatility to encapsulated cargo. In this work, we propose a method for defined-shaped functionally asymmetric polymer capsule fabrication based on a soft lithography approach. The developed capsules consist of two classes of polymers - the main part "cup" is made out of polyelectrolyte multilayers (PAH-PSS) and "lid" is made of biodegradable polyether (PLGA). Asymmetric capsules combine advantages from both traditional layer-by-layer capsules and recently developed printed "pelmeni" capsules. This combination provides stimuli-responsiveness due to polyelectrolyte multilayer properties differing from PLGA. The inner volume of capsules can be loaded with a variety of active compounds and the capsule's geometry is defined due to the soft-lithography method. Capsules have a core-shell structure and monodisperse size distribution. Three methods to trigger cargo release have been demonstrated, namely temperature treatment, ultrasonication and pH shift. Steroidal drug dexamethasone was used to illustrate the applicability of the systems for triggered drug release. The application of proposed asymmetric capsules includes but is not limited to pharmacology, diagnostics, sensors, micro- and nanoreactors and chemical actuators.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom; National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Anton Bukatin
- Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences, 8/3A Khlopina str, Saint Petersburg 194021, Russia; Institute for Analytical Instrumentation of the Russian Academy of Sciences, 31-33 A, Ivana Chernykh str., Saint Petersburg 198095, Russia
| | - Ekaterina Vyacheslavova
- Alferov Saint Petersburg National Research Academic University of the Russian Academy of Sciences, 8/3A Khlopina str, Saint Petersburg 194021, Russia
| | - David Gould
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Gleb B Sukhorukov
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom; Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russian Federation; Siberian State Medical University, Moskovskiy Trakt, 2, Tomsk 634050, Russia.
| |
Collapse
|