1
|
Cho S, Kim S, Kim Y, Chung H. Raman spectroscopic quantification of polyethylene particles in water using polydimethylsiloxane-coated nickel foam as a particle-capturing platform. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125269. [PMID: 39418683 DOI: 10.1016/j.saa.2024.125269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Nickel foam (NF) was evaluated as a medium for the capture of polyethylene (PE) particles in water. NF is a hydrophobic and porous material with a large surface area, making it a promising candidate for attracting PE particles. However, the particle-capturing efficiency using bare NF was only 69.5%. To increase capturing efficiency, a circular polydimethylsiloxane (PDMS)-coated NF (PDMS@NF, diameter: 6 mm) was employed to enhance the hydrophobicity. The capturing efficiency using the PDMS@NF was substantially increased to 97.6 % owing to the increase in hydrophobicity. To quantify the captured PE particles on/in the PDMS@NF using Raman spectroscopy, a wide area illumination (WAI) scheme providing 6 mm-diameter laser illumination was adopted to fully cover the PDMS@NF for representative spectroscopic sampling and accurate quantification. The intensity ratios of PE to PDMS peaks in the collected spectra clearly increased with the quantity of dispersed PE particles (0.1 ∼ 4.0 mg range, R2: 0.992) in the water samples, and the limit of detection was 0.08 mg. Moreover, the capturing efficiencies for polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) particles (1 mg of each) using the PDMS@NF were also superior, ranging from 96.4 to 98.2 %. Therefore, the proposed scheme incorporating the PDMS@NF as a particle-capturing and Raman measurement platform has potential as a method for on-line detection of microplastics in water.
Collapse
Affiliation(s)
- Sanghoon Cho
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangjae Kim
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Yunjung Kim
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Hoeil Chung
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Li X, Zhang J, Liu H, Li Z, Zheng G, Zhou L, Fu P. Sustainable superhydrophobic lignin-based polyurethane foam: an innovative solution for oil pollutant adsorption. RSC Adv 2025; 15:377-387. [PMID: 39758896 PMCID: PMC11696263 DOI: 10.1039/d4ra07384c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025] Open
Abstract
Green, efficient treatment of crude oil spills and oil pollutants is a global challenge, with adsorption technology favored for its efficiency and low environmental impact. The development of an environmentally friendly adsorbent with high hydrophobicity, excellent adsorption performance, and degradability is crucial to overcoming the limitations of petroleum-based adsorbents. Here, a lignin-based polyurethane foam (LPUF) with superhydrophobic and photothermal oil-absorbing properties was fabricated by incorporating octadecyltrimethoxysilane into the foam system. The modified foam showed a 151.4° water contact angle, as long-chain alkyl groups reduced surface energy, giving it superhydrophobicity. The foam adsorbent exhibited remarkable adsorption performance for a variety of organic solvents, achieving a maximum adsorption capacity of 20 g g-1 and an oil-water separation efficiency exceeding 97%. Due to its outstanding elastic recovery properties, the foam exhibited only a 1.5% reduction in adsorption capacity after 10 adsorption-desorption cycles, indicating its strong potential for repeated adsorption and recovery. Under 1 kW m-2 sunlight intensity, the surface temperature of the foam adsorbent rose to 79.7 °C within 350 seconds. The excellent photothermal conversion properties of the foam significantly reduced the viscosity of the surface crude oil, thereby increasing the adsorption rate. In addition, the modified foam adsorbent also demonstrated self-cleaning properties and could be completely degraded after 5 hours of treatment in an alkaline solution. The developed LPUF adsorbent exhibited superior hydrophobicity and oil-water separation capabilities, highlighting its potential for efficient oil pollutant removal, while also offering new avenues for the high-value utilization of renewable resources.
Collapse
Affiliation(s)
- Xinglin Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology Zibo 255000 China
| | - Jing Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology Zibo 255000 China
| | - Hong Liu
- Binzhou Inspection and Testing Center Binzhou 256600 China
| | - Zhiyu Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology Zibo 255000 China
| | - Guanfeng Zheng
- College of Agricultural Engineering and Food Science, Shandong University of Technology Zibo 255000 China
| | - Ling Zhou
- Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, School of Mechanical Electrification Engineering, Tarim University Alaer 843300 China
| | - Peng Fu
- College of Agricultural Engineering and Food Science, Shandong University of Technology Zibo 255000 China
| |
Collapse
|
3
|
Zhao C, Xie H, Huang H, Cai Y, Chen Z, Cheng J, Xiang D, Li D, Li Z, Wu Y. Superhydrophobic/ superoleophilic polystyrene-based porous material with superelasticity for highly efficient and continuous oil/water separation in harsh environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134566. [PMID: 38743973 DOI: 10.1016/j.jhazmat.2024.134566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/09/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Three-dimensional separation materials with robust physical/chemical stability have great demand for effective and continuous separation of immiscible oil/water mixtures and water-in-oil emulsions, resulting from chemical leakages and discharge of industrial oily wastewaters. Herein, a superelastic polystyrene-based porous material with superhydrophobicity/superoleophilicity was designed and prepared by high internal phase emulsion polymerization to meet the aforementioned requirements. A flexible and hydrophobic aminopropyl terminated polydimethylsiloxane (NH2-PDMS-NH2) segment was introduced into the rigid styrene-divinylbenzene copolymer through 1, 4-conjugate addition reaction with trimethylolpropane triacrylate. The addition of NH2-PDMS-NH2 simultaneously improved the mechanical and hydrophobic properties of the porous material (the water contact angle from 141.2° to 152.2°). The material exhibited outstanding reversible compressibility (80% strain, even in liquid N2 environments) and superhydrophobic stability, even after being repeatedly compressed 100 times, water contact angle still remained above 150°. Meanwhile, the as-prepared material had outstanding hydrophobic stability in corrosive solutions (strong acidic, alkaline, high-salty, and even strong polar solvent), presence of mechanical interference, strong UV radiations, and high/low temperature environments. More importantly, the material could continuously and efficiently separate immiscible oil/water mixture and water-in-oil emulsions under the above conditions, showing huge potential for the large-scale remediation of complex oily wastewaters.
Collapse
Affiliation(s)
- Chunxia Zhao
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, Southwest Petroleum University, Chengdu 610500, China.
| | - Hongxia Xie
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Haoran Huang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China.
| | - Yi Cai
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Zhuo Chen
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Jinbo Cheng
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, Southwest Petroleum University, Chengdu 610500, China
| | - Dong Xiang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, Southwest Petroleum University, Chengdu 610500, China
| | - Dong Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Zhenyu Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, Southwest Petroleum University, Chengdu 610500, China
| | - Yuanpeng Wu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, Southwest Petroleum University, Chengdu 610500, China.
| |
Collapse
|
4
|
Lu X, Shen L, Lin H, Han L, Du J, Chen C, Teng J, Li B, Yu W, Xu Y. An efficient solution based on the synergistic effects of nickel foam in NiFe-LDH nanosheets for oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133973. [PMID: 38452683 DOI: 10.1016/j.jhazmat.2024.133973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Efficient oil-water separation has always been a research hotspot in the field of environmental studies. Employing a one-step hydrothermal approach, NiFe-layered double hydroxides (LDH) nanosheets were synthesized on nickel foam substrates. The resulting NiFe-LDH/NF membrane exhibited rejection rates exceeding 99% across six diverse oil-water mixtures, concurrently demonstrating a remarkable ultra-high flux of 1.4 × 106 L·m-2·h-1. This flux value significantly surpasses those documented in existing literature, maintaining stable performance over 1000 manual filtration cycles. These breakthroughs stem from the synergistic interplay among the three-dimensional channels of the nickel foam, the nanosheets, and the hydration layer. By leveraging the pore size of the foam to enhance the functionality of the hydration layer, the conventional trade-off between permeability and selectivity was transformed into a balanced force relationship between the hydration layer and the oil phase. The operational and failure mechanisms of the hydration layer were examined using the prepared NiFe-LDH/NF membrane, validating the correlation between oil phase viscosity and density with hydration layer rupture. Additionally, an extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory was employed to investigate changes in interaction energy, further reinforcing the study's findings. This research contributes novel insights and assistance to the comprehension and application of hydration layers in other membrane studies dedicated to oil-water separation.
Collapse
Affiliation(s)
- Xinchun Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Lei Han
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jiarong Du
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Wei Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
5
|
Zhang H, Guo Z. Biomimetic materials in oil/water separation: Focusing on switchable wettabilities and applications. Adv Colloid Interface Sci 2023; 320:103003. [PMID: 37778250 DOI: 10.1016/j.cis.2023.103003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Clean water resources are crucial for human society, as the leakage and discharge of oily wastewater not only harm the economy but also disrupt our living environment. Therefore, there is an urgent need for efficient oil-water separation technology. Surfaces with switchable superwetting behavior have garnered significant attention due to their importance in both fundamental research and practical applications. This review introduces the fundamental principles of wettability in the oil-water separation process, the basic theory of switchable wettability, and the mechanisms involved in oil-water separation. Subsequently, the review discusses the research progress, challenges, and issues associated with three conventional types of special wettability materials: superhydrophobic/superoleophilic materials, superhydrophilic/superoleophobic materials, and superhydrophilic/underwater superoleophobic materials. Most importantly, it provides a detailed exploration of recent advancements in switchable wettability smart materials, which combine elements of traditional special wettability materials. These include stimulus-responsive smart materials, pre-wetting-induced materials, and Janus materials. The discussion covers key response factors, detailed examples of representative works, design concepts, and fabrication strategies. Finally, the review offers a comprehensive summary of switchable superwetting smart materials, encompassing their advantages and disadvantages, persistent challenges, and future prospects.
Collapse
Affiliation(s)
- Huimin Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
6
|
Investigation of grafting silane coupling agents on superhydrophobicity of carbonyl iron/SiO 2 particles for efficient oil/water mixture and emulsion separation. Sci Rep 2023; 13:788. [PMID: 36646864 PMCID: PMC9842716 DOI: 10.1038/s41598-023-28131-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
The present study demonstrated the wettability properties of grafting silane coupling agents on carbonyl iron (CI)/SiO2 particles for efficient oil/water mixture and emulsion separation. CI particles were first reacted with Tetraethoxysilane (TEOS) to create a magnetic component. Then, CI/SiO2 particles were altered by 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS) and Hexamethyldisilazane (HDMS) to create magnetic superhydrophobic/superoleophilic, recyclable, and reusable sorbent powders. The water contact angle (WCA) values of the as-prepared particles, CI, CI/SiO2, CI/SiO2@FAS, and CI/SiO2@HMDS, were 5.4° ± 1.3°, 6.4° ± 1.4°, 151.9° ± 2.1°, and 170.1° ± 1.1°, respectively. In addition, the oil contact angles (OCAs) of a variety of oils were found to be equivalent to 0°. Hence, superhydrophobic/superoleophilic particles for kind of different oils were shown sorption capacities of 1.7-3.1 g/g and 2.5-4.3 g/g for CI/SiO2@FAS, and CI/SiO2@HMDS, respectively. Besides, for 1%w/w hexane/water emulsion separation efficiency higher than 99%, the lowest mass was obtained at 50 and 200 mg for CI/SiO2@HDMS and CI/SiO2@HDMS, respectively, suggesting a new effective material for separating tiny oil droplets. Also, the reusability and chemical durability of the superhydrophobic samples made them a prime candidate for use in different harsh conditions.
Collapse
|
7
|
Luo Q, Peng J, Chen X, Zhang H, Deng X, Jin S, Zhu H. Recent Advances in Multifunctional Mechanical-Chemical Superhydrophobic Materials. Front Bioeng Biotechnol 2022; 10:947327. [PMID: 35910015 PMCID: PMC9326238 DOI: 10.3389/fbioe.2022.947327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, biology-inspired superhydrophobic technology has attracted extensive attention and has been widely used in self-cleaning, anti-icing, oil-water separation, and other fields. However, the poor durability restricts its application in practice; thus, it is urgent to systematically summarize it so that scientists can guide the future development of this field. Here, in this review, we first elucidated five kinds of typical superhydrophobic models, namely, Young's equation, Wenzel, Cassie-Baxter, Wenzel-Cassie, "Lotus," and "Gecko" models. Then, we summarized the improvement in mechanical stability and chemical stability of superhydrophobic surface. Later, the durability test methods such as mechanical test methods and chemical test methods are discussed. Afterwards, we displayed the applications of multifunctional mechanical-chemical superhydrophobic materials, namely, anti-fogging, self-cleaning, oil-water separation, antibacterial, membrane distillation, battery, and anti-icing. Finally, the outlook and challenge of mechanical-chemical superhydrophobic materials are highlighted.
Collapse
Affiliation(s)
- Qinghua Luo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Jiao Peng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Xiaoyu Chen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Hui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Xia Deng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Hai Zhu
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| |
Collapse
|
8
|
Fan M, Ren Z, Zhang Z, Yang Y, Guo Z. Simple preparation of a durable and low-cost load-bearing three-dimensional porous material for emulsion separation. NEW J CHEM 2021. [DOI: 10.1039/d1nj03049c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Superhydrophobic MR–C composites were used for the separation of water-in-oil emulsions. Under a load of 500 N with a reciprocating wear, the contact angle was kept at 146 ± 2°. The oil-in-water emulsion can still be separated efficiently.
Collapse
Affiliation(s)
- Mingzhi Fan
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiying Ren
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Zhen Zhang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Yu Yang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|