1
|
Seno C, Reichholf N, Salutari F, Spadaro MC, Ivanov YP, Divitini G, Gogos A, Herrmann IK, Arbiol J, Smet PF, De Roo J. Epitaxial Core/Shell Nanocrystals of (Europium-Doped) Zirconia and Hafnia. J Am Chem Soc 2024; 146:20550-20555. [PMID: 39038812 PMCID: PMC11295171 DOI: 10.1021/jacs.4c05037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
A careful design of the nanocrystal architecture can strongly enhance the nanocrystal function. So far, this strategy has faced a synthetic bottleneck in the case of refractory oxides. Here we demonstrate the epitaxial growth of hafnia shells onto zirconia cores and pure zirconia shells onto europium-doped zirconia cores. The core/shell structures are fully crystalline. Upon shelling, the optical properties of the europium dopant are dramatically improved (featuring a more uniform coordination and a longer photoluminescence lifetime), indicating the suppression of nonradiative pathways. These results launch the stable zirconium and hafnium oxide hosts as alternatives for the established NaYF4 systems.
Collapse
Affiliation(s)
- Carlotta Seno
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Nico Reichholf
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Francesco Salutari
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Barcelona, Catalonia, Spain
| | - Maria Chiara Spadaro
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Barcelona, Catalonia, Spain
- Department
of Physics and Astronomy “Ettore Majorana”, University of Catania and CNR-IMM, Via S. Sofia 64, 95123 Catania, Italy
| | - Yurii P. Ivanov
- Electron
Spectroscopy and Nanoscopy, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giorgio Divitini
- Electron
Spectroscopy and Nanoscopy, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Alexander Gogos
- Laboratory
for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and
Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Nanoparticle
Systems Engineering Laboratory, Institute of Process Engineering,
Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse
3, 8092 Zurich, Switzerland
| | - Inge K. Herrmann
- Laboratory
for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and
Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Nanoparticle
Systems Engineering Laboratory, Institute of Process Engineering,
Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse
3, 8092 Zurich, Switzerland
| | - Jordi Arbiol
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Barcelona, Catalonia, Spain
- ICREA, 08010 Barcelona, Catalonia, Spain
| | - Philippe F. Smet
- LumiLab,
Department of Solid State Sciences, Ghent
University, Krijgslaan
281-S1, 9000 Ghent, Belgium
| | - Jonathan De Roo
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
2
|
Polyakov V, Gadzhimagomedova Z, Kirsanova D, Soldatov A. Synthesis Optimization of BaGdF 5:x%Tb 3+ Nanophosphors for Tunable Particle Size. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8559. [PMID: 36500057 PMCID: PMC9740830 DOI: 10.3390/ma15238559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
X-ray photodynamic therapy (XPDT) is aimed at the treatment of deep-located malignant tumors thanks to the high penetration depth of X-rays. In XPDT therapy, it is necessary to use materials that effectively absorb X-rays and convert them into visible radiation-nanophosphors. Rare-earth elements, fluorides, in particular, doped BaGdF5, are known to serve as efficient nanophosphor. On the other hand, the particle size of nanophosphors has a crucial impact on biodistribution, cell uptake, and cytotoxicity. In this work, we investigated various Tb:Gd ratios in the range from 0.1 to 0.5 and optimized the terbium content to achieve the maximum luminescence under X-ray excitation. The effect of temperature, composition of the ethylene glycol/water solvent, and the synthesis technique (solvothermal and microwave) on the size of the nanophosphors was explored. It was found that the synthesis techniques and the solvent composition had the greatest influence on the averaged particle size. By varying these two parameters, it is possible to tune the size of the nanophosphor particles, which make them suitable for biomedical applications.
Collapse
|
3
|
pH-responsive hybrid materials with dynamic photoluminescence for anti-counterfeiting, encryption and biogenic amines detection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Crespo-Monteiro N, Valour A, Vallejo-Otero V, Traynar M, Reynaud S, Gamet E, Jourlin Y. Versatile Zirconium Oxide (ZrO 2) Sol-Gel Development for the Micro-Structuring of Various Substrates (Nature and Shape) by Optical and Nano-Imprint Lithography. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5596. [PMID: 36013735 PMCID: PMC9414744 DOI: 10.3390/ma15165596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Zirconium oxide (ZrO2) is a well-studied and promising material due to its remarkable chemical and physical properties. It is used, for example, in coatings for corrosion protection layer, wear and oxidation, in optical applications (mirror, filters), for decorative components, for anti-counterfeiting solutions and for medical applications. ZrO2 can be obtained as a thin film using different deposition methods such as physical vapor deposition (PVD) or chemical vapor deposition (CVD). These techniques are mastered but they do not allow easy micro-nanostructuring of these coatings due to the intrinsic properties (high melting point, mechanical and chemical resistance). An alternative approach described in this paper is the sol-gel method, which allows direct micro-nanostructuring of the ZrO2 layers without physical or chemical etching processes, using optical or nano-imprint lithography. In this paper, the authors present a complete and suitable ZrO2 sol-gel method allowing to achieve complex micro-nanostructures by optical or nano-imprint lithography on substrates of different nature and shape (especially non-planar and foil-based substrates). The synthesis of the ZrO2 sol-gel is presented as well as the micro-nanostructuring process by masking, colloidal lithography and nano-imprint lithography on glass and plastic substrates as well as on plane and curved substrates.
Collapse
|
5
|
Gadzhimagomedova Z, Polyakov V, Pankin I, Butova V, Kirsanova D, Soldatov M, Khodakova D, Goncharova A, Mukhanova E, Belanova A, Maksimov A, Soldatov A. BaGdF 5 Nanophosphors Doped with Different Concentrations of Eu 3+ for Application in X-ray Photodynamic Therapy. Int J Mol Sci 2021; 22:ijms222313040. [PMID: 34884843 PMCID: PMC8657490 DOI: 10.3390/ijms222313040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
X-ray photodynamic therapy (XPDT) has been recently considered as an efficient alternative to conventional radiotherapy of malignant tissues. Nanocomposites for XPDT typically consist of two components—a nanophosphor which re-emits X-rays into visible light that in turn is absorbed by the second component, a photosensitizer, for further generation of reactive oxygen species. In this study, BaGdF5 nanophosphors doped with different Eu:Gd ratios in the range from 0.01 to 0.50 were synthesized by the microwave route. According to transmission electron microscopy (TEM), the average size of nanophosphors was ~12 nm. Furthermore, different coatings with amorphous SiO2 and citrates were systematically studied. Micro-CT imaging demonstrated superior X-ray attenuation and sufficient contrast in the liver and the spleen after intravenous injection of citric acid-coated nanoparticles. In case of the SiO2 surface, post-treatment core–shell morphology was verified via TEM and the possibility of tunable shell size was reported. Nitrogen adsorption/desorption analysis revealed mesoporous SiO2 formation characterized by the slit-shaped type of pores that should be accessible for methylene blue photosensitizer molecules. It was shown that SiO2 coating subsequently facilitates methylene blue conjugation and results in the formation of the BaGdF5: 10% Eu3+@SiO2@MB nanocomposite as a promising candidate for application in XPDT.
Collapse
Affiliation(s)
- Zaira Gadzhimagomedova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.P.); (I.P.); (V.B.); (D.K.); (M.S.); (E.M.); (A.S.)
- Correspondence:
| | - Vladimir Polyakov
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.P.); (I.P.); (V.B.); (D.K.); (M.S.); (E.M.); (A.S.)
| | - Ilia Pankin
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.P.); (I.P.); (V.B.); (D.K.); (M.S.); (E.M.); (A.S.)
| | - Vera Butova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.P.); (I.P.); (V.B.); (D.K.); (M.S.); (E.M.); (A.S.)
| | - Daria Kirsanova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.P.); (I.P.); (V.B.); (D.K.); (M.S.); (E.M.); (A.S.)
| | - Mikhail Soldatov
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.P.); (I.P.); (V.B.); (D.K.); (M.S.); (E.M.); (A.S.)
| | - Darya Khodakova
- National Medical Research Centre for Oncology, 344037 Rostov-on-Don, Russia; (D.K.); (A.G.); (A.M.)
| | - Anna Goncharova
- National Medical Research Centre for Oncology, 344037 Rostov-on-Don, Russia; (D.K.); (A.G.); (A.M.)
| | - Elizaveta Mukhanova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.P.); (I.P.); (V.B.); (D.K.); (M.S.); (E.M.); (A.S.)
- Faculty of Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Anna Belanova
- Academy of Biology and Biotechnologies, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Aleksey Maksimov
- National Medical Research Centre for Oncology, 344037 Rostov-on-Don, Russia; (D.K.); (A.G.); (A.M.)
| | - Alexander Soldatov
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.P.); (I.P.); (V.B.); (D.K.); (M.S.); (E.M.); (A.S.)
| |
Collapse
|