1
|
Man JN, Zhu J, Weng GJ, Li JJ, Zhao JW. Using gold-based nanomaterials for fighting pathogenic bacteria: from detection to therapy. Mikrochim Acta 2024; 191:627. [PMID: 39325115 DOI: 10.1007/s00604-024-06713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Owing to the unique quantum size effect and surface effect, gold-based nanomaterials (GNMs) are promising for pathogen detection and broad-spectrum antimicrobial activity. This review summarizes recent research on GNMs as sensors for detecting pathogens and as tools for their elimination. Firstly, the need for pathogen detection is briefly introduced with an overview of the physicochemical properties of gold nanomaterials. And then strategies for the application of GNMs in pathogen detection are discussed. Colorimetric, fluorescence, surface-enhanced Raman scattering (SERS) techniques, dark-field microscopy detection and electrochemical methods can enable efficient, sensitive, and specific pathogen detection. The third section describes the antimicrobial applications of GNMs. They can be used for antimicrobial agent delivery and photothermal conversion and can act synergistically with photosensitizers to achieve the precise killing of pathogens. In addition, GNMs are promising for integrated pathogen detection and treatment; for example, combinations of colorimetric or SERS detection with photothermal sterilization have been demonstrated. Finally, future outlooks for the applications of GNMs in pathogen detection and treatment are summarized.
Collapse
Affiliation(s)
- Jia-Ni Man
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
2
|
Shaw AK, Khurana D, Soni S. Assessment of thermal damage for plasmonic photothermal therapy of subsurface tumors. Phys Eng Sci Med 2024; 47:1107-1121. [PMID: 38753284 DOI: 10.1007/s13246-024-01433-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/22/2024] [Indexed: 09/18/2024]
Abstract
Plasmonic photothermal therapy (PPTT) involves the use of nanoparticles and near-infrared radiation to attain a temperature above 50 °C within the tumor for its thermal damage. PPTT is largely explored for superficial tumors, and its potential to treat deeper subsurface tumors is dealt feebly, requiring the assessment of thermal damage for such tumors. In this paper, the extent of thermal damage is numerically analyzed for PPTT of invasive ductal carcinoma (IDC) situated at 3-9 mm depths. The developed numerical model is validated with suitable tissue-tumor mimicking phantoms. Tumor (IDC) embedded with gold nanorods (GNRs) is subjected to broadband near-infrared radiation. The effect of various GNRs concentrations and their spatial distributions [viz. uniform distribution, intravenous delivery (peripheral distribution) and intratumoral delivery (localized distribution)] are investigated for thermal damage for subsurface tumors situated at various depths. Results show that lower GNRs concentrations lead to more uniform internal heat generation, eventually resulting in uniform temperature rise. Also, the peripheral distribution of nanoparticles provides a more uniform spatial temperature rise within the tumor. Overall, it is concluded that PPTT has potential to induce thermal damage for subsurface tumors, at depths of upto 9 mm, by proper choice of nanoparticle distribution, dose/concentration and irradiation parameters based on the tumor location. Moreover, intravenous administration of nanoparticles seems a good choice for shallower tumors, while for deeper tumors, uniform distribution is required to attain the necessary thermal damage. In the future, the algorithm may be extended further, involving 3D patient-specific tumors and through mice model-based experiments.
Collapse
Affiliation(s)
- Amit Kumar Shaw
- Biomedical Applications Division, CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh, 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Divya Khurana
- Biomedical Applications Division, CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh, 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjeev Soni
- Biomedical Applications Division, CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh, 160030, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Kotkowiak M, Tim B, Kotkowiak M, Musiał J, Błaszkiewicz P. The Role of the Polyethylene Glycol in the Organization of Gold Nanorods at the Air-Water and Air-Solid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14561-14569. [PMID: 38961723 PMCID: PMC11256738 DOI: 10.1021/acs.langmuir.4c01427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
The organization of metallic nanoparticles into assembled films is a complex process. The type of nanoparticle stabilizing ligand and the method for creating an organized layer can profoundly affect the optical properties of the resulting nanoparticle assembly. Investigations of the ligand structure and nanoparticle interactions can provide a greater understanding of the design of the assembly process and the quality of the resulting materials. One of the functionalization methods in the preparation of specific gold nanorods is the utilization of thiol-terminated poly(ethylene glycol). This generates gold nanorods capable of forming stable monolayers at the air-water interface upon dispersion in a suitable organic solvent. Herein, we show that depending on the molecular weight of the poly(ethylene glycol), the structures obtained at the air-water and air-solid interfaces differ in the arrangement. The studied structures were characterized by using spectroscopic and microscopic techniques, and the structural type was correlated with the polymer type. Insoluble and stable Langmuir monolayers composed of higher-molecular-weight gold nanorods with poly(ethylene glycol) were formed only in the presence of an additional stabilizer that prevented the formation of gold nanorods in aqueous solutions. At the air-solid interface, conformational changes in poly(ethylene glycol) induced the aggregation of gold nanorods, which became closely packed under the influence of surface pressure. The presented results suggested that the arrangement of two-dimensional layers of gold nanorods could be tailored using poly(ethylene glycol) of various molecular weights.
Collapse
Affiliation(s)
- Michał Kotkowiak
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Beata Tim
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Mateusz Kotkowiak
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Joanna Musiał
- Department
of Rare Earths, Faculty of Chemistry, Adam
Mickiewicz University, 61-614 Poznan, Poland
| | - Paulina Błaszkiewicz
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| |
Collapse
|
4
|
Wang XY, Liu AR, Liu SQ. Molecularly imprinted polymer-based SERS sensing of transferrin in human serum. Analyst 2024; 149:3363-3371. [PMID: 38712505 DOI: 10.1039/d4an00300d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Specific detection of glycoproteins such as transferrin (TRF) related to neurological diseases, hepatoma and other diseases always plays an important role in the field of disease diagnosis. We designed an antibody-free immunoassay sensing method based on molecularly imprinted polymers (MIPs) formed by the polymerization of multiple functional monomers for the sensitive and selective detection of TRF in human serum. In the sandwich surface-enhanced Raman spectroscopy (SERS) sensor, the TRF-oriented magnetic MIP nanoparticles (Fe3O4@SiO2-MIPs) served as capture units to specifically recognize TRF and 4-mercaptophenylboronic acid-functionalized gold nanorods (MPBA-Au NRs) served as SERS probes to label the targets. In order to achieve stronger interaction between the recognition cavities of the prepared MIPs and the different amino acid fragments that make up TRF, Fe3O4@SiO2-MIPs were obtained through polycondensation reactions between more silylating reagents, enhancing the specific recognition of the entire TRF protein and achieving high IF. This sensing method exhibited a good linear response to TRF within the TRF concentration range of 0.01 ng mL-1 to 1 mg mL-1 (R2 = 0.9974), and the LOD was 0.00407 ng mL-1 (S/N = 3). The good stability, reproducibility and specificity of the resulting MIP based SERS sensor were demonstrated. The determination of TRF in human serum confirmed the feasibility of the method in practical applications.
Collapse
Affiliation(s)
- Xin-Yi Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device (CMD), Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - An-Ran Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device (CMD), Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Song-Qin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device (CMD), Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| |
Collapse
|
5
|
Shaw AK, Soni S. Role of periodic irradiation and incident beam radius for plasmonic photothermal therapy of subsurface tumors. J Therm Biol 2024; 121:103859. [PMID: 38714147 DOI: 10.1016/j.jtherbio.2024.103859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Plasmonic photothermal therapy (PPTT) is a potential technique to treat tumors selectively. However, during PPTT, issue of high temperature region and damage to the surrounding healthy is still need to be resolved. Also, treatment of deeper tumors non-invasively is a challenge for PPTT. In this paper, the effect of periodic irradiation and incident beam radius (relative to tumor size) for various gold nanorods (GNRs) concentrations is investigated to avoid much higher temperatures region with limiting thermal damage to the surrounding healthy tissue during PPTT of subsurface breast tumors located at various depths. Lattice Boltzmann method is used to solve Pennes' bioheat model to compute the resulting photothermal temperatures for the subsurface tumor embedded with GNRs subjected to broadband near infrared radiation of intensity 1 W/cm2. Computation revealed that low GNRs concentration leads to uniform internal heat generation than higher GNRs concentrations. The results show that deeper tumors, due to attenuation of incident radiation, show low temperature rise than shallower tumors. For shallower tumors situated 3 mm deep, 70% irradiation period resulted in around 20 °C reduction (110 °C-90 °C) of maximum temperature than that with the continuous irradiation. Moreover, 70% beam radius (i.e., beam radius as 70% of the tumor radius) causes less thermal damage to the nearby healthy tissue than 100% beam radius (i.e., beam radius equal to the tumor radius). The thermal damage within the healthy tissue is minimized to the 1 mm in radial direction and 3 mm in axial direction for 70% beam radius with 70% irradiation period. Overall, periodic heating and changing beam radius of the incident irradiation lead to reduce high temperature and limit healthy tissue damage. Hence, discussed results are useful for selection of the irradiation parameters for PPTT of sub-surface tumors.
Collapse
Affiliation(s)
- Amit Kumar Shaw
- Biomedical Applications Group, CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh, 160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Sanjeev Soni
- Biomedical Applications Group, CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh, 160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
6
|
Cleret de Langavant C, Oh J, Lochon F, Tusseau-Nenez S, Ponsinet V, Baron A, Gacoin T, Kim J. Near-Infrared Dual-Band LSPR Coupling in Oriented Assembly of Doped Metal Oxide Nanocrystal Platelets. NANO LETTERS 2024; 24:3074-3081. [PMID: 38412556 DOI: 10.1021/acs.nanolett.3c04849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Coupling effects of localized surface plasmon resonance (LSPR) represent an efficient means to tune the plasmonic modes and to enhance the near-field. While LSPR coupling in metal nanoparticles has been extensively explored, limited attention has been given to heavily doped semiconductor nanocrystals. Here, we investigate the LSPR coupling behavior of Cs-doped tungsten oxide (CsxWO3-δ) nanocrystal platelets as they undergo an oriented assembly into parallel stacks. The oriented assembly was achieved by lowering the dispersion stability of the colloidal nanoplatelets, of which the basal surface was selectively ligand-functionalized. This assembly induces simultaneous blue-shifts and red-shifts of dual-mode LSPR peaks without compromising the intensity and quality factor. This stands in contrast to the significant damping, broadening, and overall red-shift of the LSPR observed in random assemblies. Computational simulations successfully replicate the experimental observations, affirming the potential of this coupling phenomenon of near-infrared dual-mode LSPR in diverse applications including solar energy, bio-optics, imaging, and telecommunications.
Collapse
Affiliation(s)
- Capucine Cleret de Langavant
- Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Jisoo Oh
- Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Florian Lochon
- Université de Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| | - Sandrine Tusseau-Nenez
- Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Virginie Ponsinet
- Université de Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| | - Alexandre Baron
- Université de Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
- Institut Universitaire de France, 1 Rue Descartes, 75231 Paris Cedex 05, France
| | - Thierry Gacoin
- Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Jongwook Kim
- Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
7
|
Fergusson J, Wallace GQ, Sloan-Dennison S, Carland R, Shand NC, Graham D, Faulds K. Plasmonic and Photothermal Properties of Silica-Capped Gold Nanoparticle Aggregates. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:24475-24486. [PMID: 38148849 PMCID: PMC10749475 DOI: 10.1021/acs.jpcc.3c07536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Owing to their biocompatibility, gold nanoparticles have many applications in healthcare, notably for targeted drug delivery and the photothermal therapy of tumors. The addition of a silica shell to the nanoparticles can help to minimize the aggregation of the nanoparticles upon exposure to harsh environments and protect any Raman reporters adsorbed onto the metal surface. Here, we report the effects of the addition of a silica shell on the photothermal properties of a series of gold nanostructures, including gold nanoparticle aggregates. The presence of a Raman reporter at the surface of the gold nanoparticles also allows the structures to be evaluated by surface-enhanced Raman scattering (SERS). In this work, we explore the relationship between the degree of aggregation and the position and the extinction of the near-infrared plasmon on the observed SERS intensity and in the increase in bulk temperature upon near-infrared excitation. By tailoring the concentration of the silane and the thickness of the silica shell, it is possible to improve the photothermal heating capabilities of the structures without sacrificing the SERS intensity or changing the optical properties of the gold nanoparticle aggregates.
Collapse
Affiliation(s)
- Jodie Fergusson
- Centre
for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K.
| | - Gregory Q. Wallace
- Centre
for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K.
| | - Sian Sloan-Dennison
- Centre
for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K.
| | - Ruairí Carland
- Centre
for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K.
| | - Neil C. Shand
- Defence
Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, U.K.
| | - Duncan Graham
- Centre
for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K.
| | - Karen Faulds
- Centre
for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K.
| |
Collapse
|
8
|
Almeida AM, Moreira LG, Camacho SA, Ferreira FG, Conceição K, Tada DB, Aoki PHB. Photochemical outcomes triggered by gold shell-isolated nanorods on bioinspired nanoarchitectonics for bacterial membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184216. [PMID: 37598878 DOI: 10.1016/j.bbamem.2023.184216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Boosted by the indiscriminate use of antibiotics, multidrug-resistance (MDR) demands new strategies to combat bacterial infections, such as photothermal therapy (PTT) based on plasmonic nanostructures. PTT efficiency relies on photoinduced damage caused to the bacterial machinery, for which nanostructure incorporation into the cell envelope is key. Herein, we shall unveil the binding and photochemical mechanisms of gold shell-isolated nanorods (AuSHINRs) on bioinspired bacterial membranes assembled as Langmuir and Langmuir-Schaefer (LS) monolayers of DOPE, Lysyl-PG, DOPG and CL. AuSHINRs incorporation expanded the isotherms, with stronger effect on the anionic DOPG and CL. Indeed, FTIR of LS films revealed more modifications for DOPG and CL owing to stronger attractive electrostatic interactions between anionic phosphates and the positively charged AuSHINRs, while electrostatic repulsions with the cationic ethanolamine (DOPE) and lysyl (Lysyl-PG) polar groups might have weakened their interactions with AuSHINRs. No statistical difference was observed in the surface area of irradiated DOPE and Lysyl-PG monolayers on AuSHINRs, which is evidence of the restricted nanostructures insertion. In contrast, irradiated DOPG monolayer on AuSHINRs decreased 4.0 % in surface area, while irradiated CL monolayer increased 3.7 %. Such results agree with oxidative reactions prompted by ROS generated by AuSHINRs photoactivation. The deepest AuSHINRs insertion into DOPG may have favored chain cleavage while hydroperoxidation is the mostly like outcome in CL, where AuSHINRs are surrounding the polar groups. Furthermore, preliminary experiments on Escherichia coli culture demonstrated that the electrostatic interactions with AuSHINRs do not inhibit bacterial growth, but the photoinduced effects are highly toxic, resulting in microbial inactivation.
Collapse
Affiliation(s)
- Alexandre M Almeida
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Lucas G Moreira
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil; IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Fabiana G Ferreira
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP 12231280, Brazil
| | - Katia Conceição
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP 12231280, Brazil
| | - Dayane B Tada
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP 12231280, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.
| |
Collapse
|
9
|
Nguyen HA, Darwish S, Pham HN, Ammar S, Ha-Duong NT. Gold and Iron Oxide Nanoparticle Assemblies on Turnip Yellow Mosaic Virus for In-Solution Photothermal Experiments. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2509. [PMID: 37764538 PMCID: PMC10535558 DOI: 10.3390/nano13182509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
The ability to construct three-dimensional architectures via nanoscale engineering is important for emerging applications in sensors, catalysis, controlled drug delivery, microelectronics, and medical diagnostics nanotechnologies. Because of their well-defined and highly organized symmetric structures, viral plant capsids provide a 3D scaffold for the precise placement of functional inorganic particles yielding advanced hierarchical hybrid nanomaterials. In this study, we used turnip yellow mosaic virus (TYMV), grafting gold nanoparticles (AuNP) or iron oxide nanoparticles (IONP) onto its outer surface. It is the first time that such an assembly was obtained with IONP. After purification, the resulting nano-biohybrids were characterized by different technics (dynamic light scattering, transmission electron microcopy, X-ray photoelectron spectroscopy…), showing the robustness of the architectures and their colloidal stability in water. In-solution photothermal experiments were then successfully conducted on TYMV-AuNP and TYMV-IONP, the related nano-biohybrids, evidencing a net enhancement of the heating capability of these systems compared to their free NP counterparts. These results suggest that these virus-based materials could be used as photothermal therapeutic agents.
Collapse
Affiliation(s)
- Ha Anh Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam;
- Laboratoire ITODYS, CNRS UMR-7086, Université Paris Cité, 15 rue J-A de Baïf, 75013 Paris, France; (S.D.); (S.A.)
| | - Sendos Darwish
- Laboratoire ITODYS, CNRS UMR-7086, Université Paris Cité, 15 rue J-A de Baïf, 75013 Paris, France; (S.D.); (S.A.)
| | - Hong Nam Pham
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi 10000, Vietnam;
| | - Souad Ammar
- Laboratoire ITODYS, CNRS UMR-7086, Université Paris Cité, 15 rue J-A de Baïf, 75013 Paris, France; (S.D.); (S.A.)
| | - Nguyet-Thanh Ha-Duong
- Laboratoire ITODYS, CNRS UMR-7086, Université Paris Cité, 15 rue J-A de Baïf, 75013 Paris, France; (S.D.); (S.A.)
| |
Collapse
|
10
|
Zhang J, Zeng B, Li D, Cui Y, Wang J, Duan X, Chen W, Liu Q, Tang B. Boron nitride-Au (Ag) loaded eggshell membrane with enhanced photothermal property. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|