1
|
Karadag B, Zeybekler SE, Gelen SS, Sabour-Takanlou L, Sabour-Takanlou M, Biray Avci C, Odaci D. Electrodeposition of carbon nanotubes and conjugation of arginyl-glycyl-aspartic acid for the following of glioblastoma cells on bionanocomposites. Bioelectrochemistry 2025; 164:108937. [PMID: 39938133 DOI: 10.1016/j.bioelechem.2025.108937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
The improvement of surface treatment methods that permit the tuning of cell adhesion on the surface of biomaterials and devices is of considerable importance. Here, multi-walled carbon nanotubes (MWCNT) were modified with 4-aminothiophenol (4ATP). Then, electrodeposition of MWCNT-4ATP was carried out on 4ATP-modified screen-printed gold electrodes (SP-Au). After conjugation of Arginyl-glycyl-aspartic acid (RGD)-peptide on Poly(MWCNT-4ATP), the adhesion of U-87MG glioblastoma cells was examined by differential pulse voltammetry (DPV) technique. The synthesized MWCNT-4ATP and the obtained Poly(MWCNT-4ATP)/RGD surfaces were characterized using Scanning Electron Microscopy-Energy Dispersive X-Ray Spectrometer (SEM-EDS), Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-Ray Photoelectron Spectrometer (XPS). The linear range for U-87MG glioblastoma cells was 102-106 cells/mL. The developed Poly(MWCNT-4ATP)/RGD cell adhesion platform provided monitoring of U-87MG glioblastoma cells using DPV technique and fluorescent imaging.
Collapse
Affiliation(s)
- Belguzar Karadag
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey; Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Simge Er Zeybekler
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey; Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sultan Sacide Gelen
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey; Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Leila Sabour-Takanlou
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey; Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Maryam Sabour-Takanlou
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey; Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey; Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey.
| | - Dilek Odaci
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey; Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey.
| |
Collapse
|
2
|
Chen T, Liu C, Liu X, Zhu C, Zheng D. Simultaneous Electrochemical Detection of Catechol and Hydroquinone Based on a Carbon Nanotube Paste Electrode Modified with Electro-Reduced Graphene Oxide. Int J Mol Sci 2024; 25:9829. [PMID: 39337317 PMCID: PMC11432359 DOI: 10.3390/ijms25189829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Effectively detecting catechol (CC) and hydroquinone (HQ) simultaneously is crucial for environmental protection and human health monitoring. In the study presented herein, a novel electrochemical sensor for the sensitive simultaneous detection of CC and HQ was constructed based on an electrochemically reduced graphene oxide (ERGO)-modified multi-walled carbon nanotube paste electrode (MWCNTPE). Scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and electrochemical techniques were utilized to characterize the sensing interface and investigate the sensing mechanism. Under the optimal detection conditions, the oxidation peak currents of CC and HQ show a good linear relationship with their concentrations in the range of 0.4-400 μM with a detection limit of 0.083 μM for CC and 0.028 μM for HQ (S/N = 3). Moreover, the sensor exhibits good performance and can be applied successfully in the simultaneous detection of CC and HQ in tap water samples and urine samples with satisfactory results, indicating its promising application prospects.
Collapse
Affiliation(s)
- Tingfei Chen
- School of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China; (T.C.); (C.L.); (X.L.); (C.Z.)
| | - Chao Liu
- School of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China; (T.C.); (C.L.); (X.L.); (C.Z.)
- Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Xiaojun Liu
- School of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China; (T.C.); (C.L.); (X.L.); (C.Z.)
- Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Chunnan Zhu
- School of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China; (T.C.); (C.L.); (X.L.); (C.Z.)
- Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Dongyun Zheng
- School of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China; (T.C.); (C.L.); (X.L.); (C.Z.)
- Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| |
Collapse
|
3
|
Younas R, Jubeen F, Bano N, Andreescu S, Zhang H, Hayat A. Covalent organic frameworks (COFs) as carrier for improved drug delivery and biosensing applications. Biotechnol Bioeng 2024; 121:2017-2049. [PMID: 38665008 DOI: 10.1002/bit.28718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
Porous organic frameworks (POFs) represent a significant subclass of nanoporous materials in the field of materials science, offering exceptional characteristics for advanced applications. Covalent organic frameworks (COFs), as a novel and intriguing type of porous material, have garnered considerable attention due to their unique design capabilities, diverse nature, and wide-ranging applications. The unique structural features of COFs, such as high surface area, tuneable pore size, and chemical stability, render them highly attractive for various applications, including targeted and controlled drug release, as well as improving the sensitivity and selectivity of electrochemical biosensors. Therefore, it is crucial to comprehend the methods employed in creating COFs with specific properties that can be effectively utilized in biomedical applications. To address this indispensable fact, this review paper commences with a concise summary of the different methods and classifications utilized in synthesizing COFs. Second, it highlights the recent advancements in COFs for drug delivery, including drug carriers as well as the classification of drug delivery systems and biosensing, encompassing drugs, biomacromolecules, small biomolecules and the detection of biomarkers. While exploring the potential of COFs in the biomedical field, it is important to acknowledge the limitations that researchers may encounter, which could impact the practicality of their applications. Third, this paper concludes with a thought-provoking discussion that thoroughly addresses the challenges and opportunities associated with leveraging COFs for biomedical applications. This review paper aims to contribute to the scientific community's understanding of the immense potential of COFs in improving drug delivery systems and enhancing the performance of biosensors in biomedical applications.
Collapse
Affiliation(s)
- Rida Younas
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Farhat Jubeen
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Nargis Bano
- Department of Physics and Astronomy College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, USA
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
| | - Akhtar Hayat
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Punjab, Pakistan
| |
Collapse
|
4
|
Paz R, Viltres H, Gupta NK, Phung V, Srinivasan S, Rajabzadeh AR, Leyva C. Covalent organic frameworks as highly versatile materials for the removal and electrochemical sensing of organic pollutants. CHEMOSPHERE 2023; 342:140145. [PMID: 37714485 DOI: 10.1016/j.chemosphere.2023.140145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
The presence of persistent organic compounds in water has become a worldwide issue due to its resistance to natural degradation, inducing its environmental resilience. Therefore, the accumulation in water bodies, soils, and humans produces toxic effects. Also, low levels of organic pollutants can lead to serious human health issues, such as cancer, chronic diseases, thyroid complications, immune system suppression, etc. Therefore, developing efficient and economically viable remediation strategies motivates researchers to delve into novel domains within material science. Moreover, finding approaches to detect pollutants in drinking water systems is vital for safeguarding water safety and security. Covalent organic frameworks (COFs) are valuable materials constructed through strong covalent interactions between blocked monomers. These materials have tremendous potential in removing and detecting persistent organic pollutants due to their high adsorption capacity, large surface area, tunable porosity, porous structure, and recyclability. This review discusses various synthesis routes for constructing non-functionalized and functionalized COFs and their application in the remediation and electrochemical sensing of persistent organic compounds from contaminated water sources. The development of COF-based materials has some major challenges that need to be addressed for their suitability in the industrial configuration. This review also aims to highlight the importance of COFs in the environmental remediation application with detailed scrutiny of their challenges and outcomes in the current research scenario.
Collapse
Affiliation(s)
- Roxana Paz
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, 11500, CDMX, Mexico
| | - Herlys Viltres
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada
| | - Nishesh Kumar Gupta
- Department of Environmental Research, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Vivian Phung
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada.
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada.
| | - Carolina Leyva
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, 11500, CDMX, Mexico.
| |
Collapse
|
5
|
Chen J, Wang Y, Yu Y, Wang J, Liu J, Ihara H, Qiu H. Composite materials based on covalent organic frameworks for multiple advanced applications. EXPLORATION (BEIJING, CHINA) 2023; 3:20220144. [PMID: 37933382 PMCID: PMC10624394 DOI: 10.1002/exp.20220144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Covalent organic frameworks (COFs) stand for a class of emerging crystalline porous organic materials, which are ingeniously constructed with organic units through strong covalent bonds. Their excellent design capabilities, and uniform and tunable pore structure make them potential materials for various applications. With the continuous development of synthesis technique and nanoscience, COFs have been successfully combined with a variety of functional materials to form COFs-based composites with superior performance than individual components. This paper offers an overview of the development of different types of COFs-based composites reported so far, with particular focus on the applications of COFs-based composites. Moreover, the challenges and future development prospects of COFs-based composites are presented. We anticipate that the review will provide some inspiration for the further development of COFs-based composites.
Collapse
Affiliation(s)
- Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
| | - Yuting Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Yongliang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioCanada
| | - Hirotaka Ihara
- Department of Applied Chemistry and BiochemistryKumamoto UniversityChuo‐kuKumamotoJapan
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
| |
Collapse
|
6
|
Ganesh PS, Govindasamy M, Kim SY, Choi DS, Ko HU, Alshgari RA, Huang CH. Synergetic effects of Mo 2C sphere/SCN nanocatalysts interface for nanomolar detection of uric acid and folic acid in presence of interferences. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114694. [PMID: 36857924 DOI: 10.1016/j.ecoenv.2023.114694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Till to date, the application of sulfur-doped graphitic carbon nitride supported transition metal carbide interface for electrochemical sensor fabrication was less explored. In this work, we designed a simple synthesis of molybdenum carbide sphere embedded sulfur doped graphitic carbon nitride (Mo2C/SCN) catalyst for the nanomolar electrochemical sensor application. The synthesized Mo2C/SCN nanocatalyst was systematically characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) with elemental mapping. The SEM images show that the porous SCN network adhered uniformly on Mo2C, causing a loss of crystallinity in the diffractogram. The corresponding elemental mapping of Mo2C/SCN shows distinct peaks for carbon (41.47%), nitrogen (32.54%), sulfur (1.37%), and molybdenum (24.62%) with no additional impurity peaks, reflecting the successful synthesis. Later, the glassy carbon electrode (GCE) was modified by Mo2C/SCN nanocatalyst for simultaneous sensing of uric acid (UA) and folic acid (FA). The fabricated Mo2C/SCN/GCE is capable of simultaneous and interference free electrochemical detection of UA and FA in a binary mixture. The limit of detection (LOD) calculated at Mo2C/SCN/GCE for UA and FA was 21.5 nM (0.09 - 47.0 μM) and 14.7 nM (0.09 - 167.25 μM) respectively by differential pulse voltammetric (DPV) technique. The presence of interferons has no significant effect on the sensor's performance, making it suitable for real sample analysis. The present method can be extended to fabricate an electrochemical sensor for various molecules.
Collapse
Affiliation(s)
- Pattan-Siddappa Ganesh
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| | - Mani Govindasamy
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Full-time faculty, International PhD Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City, 243303, Taiwan; Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Sang-Youn Kim
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea.
| | - Dong-Soo Choi
- Smart Interface and Extended Reality Laboratory, Department of Computer Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Hyun-U Ko
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| | | | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|
7
|
Lu Z, Wang Y, Li G. Covalent Organic Frameworks-Based Electrochemical Sensors for Food Safety Analysis. BIOSENSORS 2023; 13:291. [PMID: 36832057 PMCID: PMC9954712 DOI: 10.3390/bios13020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Food safety is a key issue in promoting human health and sustaining life. Food analysis is essential to prevent food components or contaminants causing foodborne-related illnesses to consumers. Electrochemical sensors have become a desirable method for food safety analysis due to their simple, accurate and rapid response. The low sensitivity and poor selectivity of electrochemical sensors working in complex food sample matrices can be overcome by coupling them with covalent organic frameworks (COFs). COFs are a kind of novel porous organic polymer formed by light elements, such as C, H, N and B, via covalent bonds. This review focuses on the recent progress in COF-based electrochemical sensors for food safety analysis. Firstly, the synthesis methods of COFs are summarized. Then, a discussion of the strategies is given to improve the electrochemistry performance of COFs. There follows a summary of the recently developed COF-based electrochemical sensors for the determination of food contaminants, including bisphenols, antibiotics, pesticides, heavy metal ions, fungal toxin and bacterium. Finally, the challenges and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhenyu Lu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingying Wang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
8
|
Porous carbon fabricated by a residue from Longquan lignite ethanolysis as an electrochemical sensor for simultaneous detection of hydroquinone and catechol in the presence of resorcinol. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
9
|
Sasikumar R, Kim B, Ishfaque A. Active-site-rich binary metal oxides integrated organic-inorganic hybrid nanocomposite: Electrochemical simultaneous detection of multi-drugs of isoprenaline and resorcinol in real samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Chen R, Peng X, Song Y, Du Y. A Paper-Based Electrochemical Sensor Based on PtNP/COF TFPB-DHzDS@rGO for Sensitive Detection of Furazolidone. BIOSENSORS 2022; 12:bios12100904. [PMID: 36291041 PMCID: PMC9599777 DOI: 10.3390/bios12100904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 05/31/2023]
Abstract
Herein, a paper-based electrochemical sensor based on PtNP/COFTFPB-DHzDS@rGO was developed for the sensitive detection of furazolidone. A cluster-like covalent organic framework (COFTFPB-DHzDS) was successfully grown on the surface of amino-functional reduced graphene oxide (rGO-NH2) to avoid serious self-aggregation, which was further loaded with platinum nanoparticles (PtNPs) with high catalytic activity as nanozyme to obtain PtNP/COFTFPB-DHzDS@rGO nanocomposites. The morphology of PtNP/COFTFPB-DHzDS@rGO nanocomposites was characterized, and the results showed that the smooth rGO surface became extremely rough after the modification of COFTFPB-DHzDS. Meanwhile, ultra-small PtNPs with sizes of around 1 nm were precisely anchored on COFTFPB-DHzDS to maintain their excellent catalytic activity. The conventional electrodes were used to detect furazolidone and showed a detection limit as low as 5 nM and a linear range from 15 nM to 110 μM. In contrast, the detection limit for the paper-based electrode was 0.23 μM, and the linear range was 0.69-110 μM. The results showed that the paper-based electrode can be used to detect furazolidone. This sensor is a potential candidate for the detection of furazolidone residue in human serum and fish samples.
Collapse
Affiliation(s)
| | | | | | - Yan Du
- Correspondence: or ; Tel.: +86-0791-88120861
| |
Collapse
|
11
|
Deng P, Zhou C, Wei Y, Yue X, Li J, Yao L, Ding J, He Q. Salicylaldehyde functionalized chitosan for electrochemical sensitive sensor: Simultaneous determination of catechol and hydroquinone. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
13
|
Electrochemical (Bio)Sensors Based on Covalent Organic Frameworks (COFs). SENSORS 2022; 22:s22134758. [PMID: 35808255 PMCID: PMC9268951 DOI: 10.3390/s22134758] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023]
Abstract
Covalent organic frameworks (COFs) are defined as crystalline organic polymers with programmable topological architectures using properly predesigned building blocks precursors. Since the development of the first COF in 2005, many works are emerging using this kind of material for different applications, such as the development of electrochemical sensors and biosensors. COF shows superb characteristics, such as tuneable pore size and structure, permanent porosity, high surface area, thermal stability, and low density. Apart from these special properties, COF’s electrochemical behaviour can be modulated using electroactive building blocks. Furthermore, the great variety of functional groups that can be inserted in their structures makes them interesting materials to be conjugated with biological recognition elements, such as antibodies, enzymes, DNA probe, aptamer, etc. Moreover, the possibility of linking them with other special nanomaterials opens a wide range of possibilities to develop new electrochemical sensors and biosensors.
Collapse
|