1
|
Liu X, Gu X, Zhou Y, Pan W, Liu J, Song J. Antifouling Slippery Surface against Marine Biofouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13441-13448. [PMID: 37657482 DOI: 10.1021/acs.langmuir.3c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Titanium and its alloys have become the most excellent structure materials for naval seawater pipelines due to their high strength and good corrosion resistance. However, marine biofouling poses a serious threat to titanium alloy piping systems because of their good biocompatibility. Recently, the biomimetic antifouling coating, a novel antifouling method, has received great attention. Here, based on this biomimetic idea, we develop a nontoxic antifouling slippery surface (AFSS) using silicone oil, silane coupling agent, nanosilica, nanoceramic coating, epoxy resin, and capsaicin. The developed AFSS has excellent slippery performance for various droplets, good durability, and a superior self-cleaning property. Additionally, the antifouling performance of the AFSS was significantly enhanced, as confirmed by the reduced adhesion of proteins (70.7%), bacteria (97.2%), and algae (97.7%) compared to the ordinary titanium alloy. With these excellent properties, the AFSS was expected to be a promising candidate for protecting titanium alloy piping systems from marine biofouling.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiaolei Gu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yuyang Zhou
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Weihao Pan
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiyu Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinlong Song
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
2
|
Zhao M, Shang Y, Xiong Y, Zhang X. Reusable, Stable, Efficient and Multifunctional Superhydrophobic and Oleophilic Polyurethane Sponge for Oil-Water Separation Prepared Using Discarded Composite Insulator. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6320. [PMID: 37763597 PMCID: PMC10532702 DOI: 10.3390/ma16186320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Oil spills and chemical leakages are a serious source of pollution in oceans and rivers, and have attracted worldwide attention. Many scientists are currently engaged in the development of oil-water separation technology. In this study, the umbrella skirt of a discarded silicone rubber insulator was utilized as feedstock, and polydimethylsiloxane (PDMS) was employed to immobilize the prepared powder (FXBW) onto a polyurethane (PU) sponge skeleton. Without any modifications using chemical reagents, a novel oil-water separation material, FXBW-PU, was developed, with a water contact angle of 155.3°. The FXBW-PU sponge exhibited an absorption capacity ranging from 11.79 to 26.59 g/g for various oils and organic solvents, while maintaining an excellent selective adsorption performance, even after undergoing ten compression cycles, due to its exceptional chemical and mechanical stability. With the assistance of a vacuum pump, the FXBW-PU sponge was utilized in a continuous separation apparatus, resulting in a separation efficiency exceeding 98.6% for various oils and organic solvents. The separation efficiency of n-hexane remains as high as 99.2% even after 10 consecutive separation cycles. Notably, the FXBW-PU sponge also separated the dichloromethane-in-water emulsions, which achieved the effect of purifying water. In summary, FXBW-PU sponge has great potential in the field of cleaning up oil/organic solvent contamination due to its low preparation cost, environmental friendliness and excellent performance.
Collapse
Affiliation(s)
- Meiyun Zhao
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenace, China Three Gorges University, Yichang 443000, China; (M.Z.)
- College of Mechanical & Power Engineering, China Three Gorges University, Yichang 443000, China
| | - Yuanyuan Shang
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenace, China Three Gorges University, Yichang 443000, China; (M.Z.)
| | - Yufan Xiong
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenace, China Three Gorges University, Yichang 443000, China; (M.Z.)
| | - Xiaolong Zhang
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenace, China Three Gorges University, Yichang 443000, China; (M.Z.)
| |
Collapse
|
3
|
Zhou Y, Li Y, Liu J, Zhang Y, Cao X, Wang S, Duan Z, Yuan Z, Chen Y, Meng Y, Lv M, Sun J, Liu X. Antiadhesion Superhydrophobic Bipolar Electrocoagulation Tweezers with High Conductivity and Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10593-10600. [PMID: 37486199 DOI: 10.1021/acs.langmuir.3c01202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Irregularly shaped electrosurgical devices face significant challenges in electrosurgery due to serious blood and tissue adhesion. Superhydrophobic surfaces inspired by lotus leaves have attracted great attention for their promising antiadhesion properties. However, there are few methods for efficiently preparing superhydrophobic irregularly shaped bipolar electrocoagulation tweezers (BETs). Herein, we propose a simple and environmentally friendly method to fabricate antiadhesion superhydrophobic surfaces on BETs. The superhydrophobicity is obtained by combining laser texturing to form rough structures and low surface energy modification via stearic acid. The formation mechanism of superhydrophobicity is investigated through analyzing microstructures and chemical compositions by scanning electron microscopy, white-light interferometry, and X-ray photoelectron spectroscopy. The functionalized BET surfaces exhibit excellent water repellency with a contact angle of 159.6°, a roll-off angle of 1°, and a surface energy of 14.3 mJ/m2, possessing excellent antiadhesion properties against blood, chicken breast tissue, and pork tissue. Compared with ordinary BETs, the mass of blood, pork tissue, and chicken breast tissue adhered to the superhydrophobic BET is reduced by 97.70, 70.34, and 75.35%, respectively. Moreover, the superhydrophobic BETs have excellent conductivity and maintain good antiadhesion properties after low-temperature storage for 2 weeks, after being impacted by sand and blood and 30 cycles of tape peeling tests. With outstanding antiadhesion performance, the superhydrophobic BET may have promising application prospects in the electrosurgery field.
Collapse
Affiliation(s)
- Yuyang Zhou
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yuheng Li
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiyu Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yonghui Zhang
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xinming Cao
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shuaishuai Wang
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhenjing Duan
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zizhen Yuan
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yang Chen
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yilan Meng
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Mingchuan Lv
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jing Sun
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xin Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
4
|
Xu Y, Zeng X, Qiu L, Yang F. 2D nanoneedle-like ZnO/SiO2 Janus membrane with asymmetric wettability for highly efficient separation of various oil/water mixtures. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Tong H, Chen H, Zhao Y, Liu M, Cheng Y, Lu J, Tao Y, Du J, Wang H. Robust PDMS-based porous sponge with enhanced recyclability for selective separation of oil-water mixture. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|