1
|
Jia H, Cheng M, Zhao R, Zheng P, Ren F, Nan Y, Huang M, Li Y. Excellent Pd-Loaded Magnetic Nanocatalyst on Multicarboxyl and Boronic Acid Biligands. ACS OMEGA 2024; 9:17817-17831. [PMID: 38680317 PMCID: PMC11044249 DOI: 10.1021/acsomega.3c07133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/28/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024]
Abstract
An effective palladium nanocatalyst (Fe3O4@SiO2-FPBA-DTPA-Pd) was proposed and prepared, which was immobilized on magnetic silica with ethylenediamine pentaacetic acid and formylphenylboronic acid as biligands. A series of characterizations showed that Fe3O4@SiO2-FPBA-DTPA-Pd was 5-15 nm and contained 1.44 mmol/g Pd2+/Pd0. It was stable below 232.7 °C, and its saturation magnetization value was 21.17 emu/g which was easily recycled by a magnet. Its catalytic ability was evaluated through 7 Suzuki reactions and 15 Heck reactions. Results showed that the yields of 14 reactions catalyzed by Fe3O4@SiO2-FPBA-DTPA-Pd were more than 90%, while were better than those of the other two immobilized Pd catalysts on a single diethyltriamine pentaacetic acid (DTPA) group or boronic acid group. Moreover, Fe3O4@SiO2-FPBA-DTPA-Pd showed good reusability in both Suzuki and Heck reactions. In two model Suzuki and Heck reactions, after seven cycles, its yields were still above 95% without significant loss, which exceeded those of many reported catalysts; therefore, it has great potential in future large-scale industrial production.
Collapse
Affiliation(s)
- Haijiao Jia
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Mengqi Cheng
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ran Zhao
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Pingyi Zheng
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fangfang Ren
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yaqin Nan
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Mengting Huang
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Youxin Li
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Liu F, Liu X. Amphiphilic Dendronized Copolymer-Encapsulated Au, Ag and Pd Nanoparticles for Catalysis in the 4-Nitrophenol Reduction and Suzuki-Miyaura Reactions. Polymers (Basel) 2024; 16:1080. [PMID: 38674999 PMCID: PMC11054709 DOI: 10.3390/polym16081080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The branched structures of dendronized polymers can provide good steric stabilization for metal nanoparticle catalysts. In this work, an amphiphilic dendronized copolymer containing hydrophilic branched triethylene glycol moieties and hydrophobic branched ferrocenyl moieties is designed and prepared by one-pot ring-opening metathesis polymerization, and is used as the stabilizer for metal (Au, Ag and Pd) nanoparticles. These metal nanoparticles (Au nanoparticles: 3.5 ± 3.0 nm; Ag nanoparticles: 7.2 ± 4.0 nm; Pd nanoparticles: 2.5 ± 1.0 nm) are found to be highly active in both the 4-nitrophenol reduction and Suzuki-Miyaura reactions. In the 4-nitrophenol reduction, Pd nanoparticles have the highest catalytic ability (TOF: 2060 h-1). In addition, Pd nanoparticles are also an efficient catalyst for Suzuki-Miyaura reactions (TOF: 1980 h-1) and possess good applicability for diverse substrates. The amphiphilic dendronized copolymer will open a new door for the development of efficient metal nanoparticle catalysts.
Collapse
Affiliation(s)
| | - Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China;
| |
Collapse
|
3
|
Barzkar A, Salimi Beni A, Parang S, Salahshour F. Fe 3O 4@void@C-Schiff-base/Pd yolk-shell nanostructures as an effective and reusable nanocatalyst for Suzuki coupling reaction. Sci Rep 2023; 13:19940. [PMID: 37968275 PMCID: PMC10651923 DOI: 10.1038/s41598-023-46839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
This article describes the synthesis of a novel Yolk-Shell structured Magnetic Yolk-Shell Nanomaterials Modified by Functionalized Carbon Shell with Schiff/Palladium Bases (Fe3O4@void@C-Schiff-base/Pd). The designed Fe3O4@void@C-Schiff-base/Pd catalyst was characterized using several techniques such as Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermal gravimetric analysis (TGA), powder X-ray diffraction (PXRD) and Inductively coupled plasma (ICP). The Fe3O4@void@C-Schiff-base/Pd was used as powerful catalyst for preparation Suzuki reaction in short reaction times and high yield in H2O at 60 °C and presence of potassium carbonate base. This nanocatalyst was magnetically recovered and reused several times with keeping its efficiency.
Collapse
Affiliation(s)
- Aliyeh Barzkar
- Department of Chemistry, Faculty of Science, Yasouj University, Yasouj, 75918-74831, Iran
| | - Alireza Salimi Beni
- Department of Chemistry, Faculty of Science, Yasouj University, Yasouj, 75918-74831, Iran.
| | - Shahab Parang
- Department of Chemistry, Faculty of Science, Vali-E-Asr University, P.O. Box 77176, Rafsanjan, Islamic Republic of Iran
| | - Farhang Salahshour
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Fabrication and Catalytic Performance of A New Diaminopyridine Pd(II) Monolayer Supported on Graphene Oxide for Catalyzing Suzuki Coupling Reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Chen B, Lin T, You H, Fang L, Chu C, Yang J, Tong S. Preparation of Sulfobutylether-β-cyclodextrin Bonded Fe3O4/SiO2 Core-Shell Nanoparticles and its Application in Enantioselective Liquid-Liquid Extraction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Xiao X, Lee S, Ma H, Yang J, Han WS, Yu T. Rapid one-pot synthesis of magnetically separable Fe 3O 4-Pd nanocatalysts: a highly reusable catalyst for the Suzuki-Miyaura coupling reaction. Dalton Trans 2022; 51:11485-11490. [PMID: 35833526 DOI: 10.1039/d2dt01422j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterogeneous catalysts comprising noble metals and magnetic materials allow a straightforward separation from a reaction using an external magnet and are recovered easily. In this study, we synthesized magnetic Fe3O4-Pdn hybrid heterogeneous catalysts via a rapid one-pot aqueous-phase method. The synthesized Fe3O4-Pd NPs dispersed well with small size (∼50 nm), maintaining high magnetic responsiveness, and showed high reactivity and reusability for the Suzuki-Miyaura coupling reaction between aryl halides and phenylboronic acid. The synthesized Fe3O4-Pd50 catalyst could be recycled at least ten times with no significant loss of catalytic activity by external magnet separation.
Collapse
Affiliation(s)
- Xiangyun Xiao
- Department of Chemical Engineering, College of Engineering, Integrated Engineering Major, Kyung Hee University, Yongin 17104, Korea.
| | - Sunhee Lee
- Department of Chemistry, Seoul Women's University, 01797, Korea.
| | - Hyeonjong Ma
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.,Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.,Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Won-Sik Han
- Department of Chemistry, Seoul Women's University, 01797, Korea.
| | - Taekyung Yu
- Department of Chemical Engineering, College of Engineering, Integrated Engineering Major, Kyung Hee University, Yongin 17104, Korea.
| |
Collapse
|