1
|
Jiao M, Shi Y, Li M, Zhang H, Li S, Deng H, Xia D. The surface functional groups-driven fast and catalytic degradation of naproxen on sludge biochar enhanced by citric acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124857. [PMID: 39214447 DOI: 10.1016/j.envpol.2024.124857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In this work, a sludge biochar (CA-SBC-300) with efficient activation of peroxymonosulfate (PMS) was prepared by citric acid modification. CA-SBC-300 achieved efficient degradation of naproxen (NPX) (95.5%) within 10 min by activating PMS. This system was highly resilient to common disruptive factors such as inorganic anions, humic acid (HA) and solution pH. The results of XPS and Raman showed that the content of oxygenated functional groups (OFGs) and the degree of defects on the sludge biochar increased after citric acid modification, which may be an important reason for the enhanced catalytic performance of SBC. In the CA-SBC-300/PMS system, 1O2 and O2•- made the main contributions to the degradation of NPX. XPS analysis and DFT calculations demonstrated that C=O/C-O and pyridine N on CA-SBC-300 were the crucial active sites for PMS activation. According to the results of UPLC-MS analysis, three possible pathways for NPX degradation were inferred. This study provided a feasible strategy for sludge resource utilization combined with efficient catalytic degradation of toxic organic contaminants in wastewater.
Collapse
Affiliation(s)
- Min Jiao
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| | - Yintao Shi
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China.
| | - Meng Li
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China; Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Hao Zhang
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| | - Shasha Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China
| | - Huiyuan Deng
- Hubei Provincial Spatial Planning Research Institute, Wuhan, 430064, PR China
| | - Dongsheng Xia
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China.
| |
Collapse
|
2
|
Dung NT, Ha DTH, Thao VD, Thao NP, Lam TD, Lan PT, Trang TT, Ngan LV, Nhi BD, Thuy NT, Lin KYA, Huy NN. Effective activation of peroxymonosulfate by CoCr-LDH for removing organic contaminants in water: from lab-scale to practical applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26773-26789. [PMID: 38456975 DOI: 10.1007/s11356-024-32776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
In this study, CoCr layered double hydroxide material (CoCr-LDH) was prepared and used as an effective catalyst for peroxymonosulfate (PMS) activation to degrade organics in water. The prepared CoCr-LDH material had a crystalline structure and relatively porous structure, as determined by various surface analyses. In Rhodamine B (RhB) removal, the most outstanding PMS activation ability belongs to the material with a Co:Cr molar ratio of 2:1. The removal of RhB follows pseudo-first-order kinetics (R2 > 0.99) with an activation energy of 38.23 kJ/mol and efficiency of 98% after 7 min of treatment, and the total organic carbon of the solution reduced 47.2% after 10 min. The activation and oxidation mechanisms were proposed and the RhB degradation pathways were suggested with the key contribution of O2•- and 1O2. Notably, CoCr-LDH can activate PMS over a wide pH range of 4 - 9, and apply to a wide range of organic pollutants and aqueous environments. The material has high stability and good recovery, which can be reused for 5 cycles with a stable efficiency of above 88%, suggesting a high potential for practical recalcitrant water treatment via PMS activation by heterogeneous catalysts.
Collapse
Affiliation(s)
- Nguyen Trung Dung
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Vietnam
| | - Do Thi Hong Ha
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Vietnam
| | - Vu Dinh Thao
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Vietnam
| | - Nguyen Phuong Thao
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Vietnam
| | - Tran Dai Lam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Pham Thi Lan
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tran Thi Trang
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam
| | - Le Viet Ngan
- National Institute for Food Control, 65 Pham Than Duat Street, Mai Dich Ward, Cau Giay District, Hanoi, Vietnam
| | - Bui Dinh Nhi
- Faculty of Environmental Technology, Viet Tri University of Industry, 9 Tien Sơn Street, Tien Cat District, Phu Tho, Viet Nam
| | - Nguyen Thi Thuy
- School of Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Kun-Yi Andrew Lin
- Innovation and Development Center of Sustainable Agriculture and Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Nguyen Nhat Huy
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
| |
Collapse
|
3
|
Xie M, Liu C, Liang M, Rad S, Xu Z, You S, Wang D. A review of the degradation of antibiotic contaminants using advanced oxidation processes: modification and application of layered double hydroxides based materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18362-18378. [PMID: 38353817 DOI: 10.1007/s11356-024-32059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/15/2024] [Indexed: 03/09/2024]
Abstract
In recent years, the treatment of organic pollutants has become a global concern due to the threat to human health posed by emerging contaminants, especially antibiotic contamination. Advanced oxidation processes (AOPs) can solve the organic pollution problem well, which have been identified as a promising solution for the treatment of hard-to-handle organic compounds including antibiotic contaminants. Layered double hydroxides (LDHs) are excellent catalysts because of their flexible tunability, favorable thermal stability, abundant active sites, and facile exchangeability of intercalated anions. This paper conducted a systematic review of LDHs-based materials used for common antibiotic removal by three significant AOP technologies, such as photocatalysis, the Fenton-like processes, and peroxymonosulfate catalysis. The degradation effects studied in various studies were reviewed, and the mechanisms were discussed in detail based on the type of AOPs. Finally, the challenges and the application trends of AOPs that may arise were prospected. The aim of this study is to suggest ways to provide practical guidance for the screening and improvement of LDH materials and the rational selection of AOPs to achieve efficient antibiotic degradation. This could lead to the development of more efficient and environmentally friendly materials and processes for degrading antibiotics, with significant implications for our ecological conservation by addressing water pollution.
Collapse
Affiliation(s)
- Mingqi Xie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Chongmin Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
| | - Meina Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Saeed Rad
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Zejing Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Shaohong You
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
4
|
Bao S, Yu X, Li X. Study on the dominant mechanism of direct hole oxidation for the photodegradation of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3786-3799. [PMID: 38091223 DOI: 10.1007/s11356-023-31003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/06/2023] [Indexed: 01/19/2024]
Abstract
Antibiotic contamination has a significant negative impact on China, one of the largest producers and consumers of antibiotics worldwide. In this study, a three-dimensional flower-like structure of CoFe-LDHs was used to efficiently degrade tetracycline (TC) in a system triggered by peroxymonosulfate (PMS) and exposed to visible light. After exploring the effects of different metal ratios, catalyst dosage, initial TC concentrations, and pH, the optimal reaction conditions were determined. In comparison to pure CoFe-LDHs, the TC elimination rate was dramatically increased by the addition of the PMS. The strong environmental resistance, excellent stability and reusability, and universal flexibility were shown. The quenching experiments and electron spin resonance detection showed that the creation of reactive oxygen species was facilitated by the synergistic transmission of electrons between the active bimetallic components. Further, photogenerated holes was the dominant oxidizing species, which contributed more to the degradation of TC. The potential degradation pathways and intermediate toxicity of TC were suggested. This work offers a new method dominated by photogenerated holes for efficiently removing TC effluent.
Collapse
Affiliation(s)
- Siqi Bao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China.
- Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun, 130022, People's Republic of China.
| | - Xiaotong Yu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Xiaolin Li
- College of Tourism and Geography Science, Jilin Normal University, Changchun, 130022, People's Republic of China
| |
Collapse
|