1
|
Ren H, Wu Y, Shang J, Jin W, Hou D, Hu G, Wang B. Cleaning Oily Sludge Using Colloidal Gas Aphrons: Optimizing Process Conditions and Analyzing Mechanisms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13892-13902. [PMID: 38915238 DOI: 10.1021/acs.langmuir.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Colloidal gas aphrons (CGAs) are applied in pollutant removal due to their large specific surface area and high surface activity. The structure and properties of the prepared CGAs were investigated in the process of oil removal from oily sludge. The prepared CGAs had a liquid film thickness was 5-10 μm with high stability. CGA interfacial tension was as low as 3.157 mN/m. Then it was found that the oil removal rate of CGAs was higher than that of chemical treatments, showing that CGAs could increase the mass transfer surface area and provide additional attachment sites for pollutants, enhancing the oil removal. The treatment conditions of the oil removal were optimized through response surfaces, showing that under optimal treatment conditions, the oil removal rate of oily sludge reached 96.07%. Additionally, the interaction between surfactant concentration and temperature was the most significant of all of the influencing factors. The behavior and mechanism of CGAs in the cleaning process of oily sludge were further investigated using an inverted fluorescence microscope, SEM, FTIR, and two-dimensional fluorescence spectrometer, showing that pollutants transferred from the liquid film surface of CGAs to the inside the film, and CGAs could specifically adsorb negatively charged organic compounds and aromatic hydrocarbons. The results show that CGAs achieved liquid membrane solubilization. Many negatively charged organic compounds and aromatic hydrocarbons are adsorbed onto the CGAs liquid membrane surface via electrostatic and hydrophobic interactions and then migrated to the hydrophobic layer of the CGAs liquid membrane due to the distribution effect, thus enabling rapid pollutant migration between solid and liquid phases.
Collapse
Affiliation(s)
- Hongyang Ren
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, P. R. China
| | - Yongting Wu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Jiajian Shang
- Exploration Division, China National Petroleum Tarim Oilfield Branch, Korla 841600, P. R. China
| | - Wenhui Jin
- Sichuan Energy Investment Group Co., Ltd, Chengdu 610000, P. R. China
| | - Diya Hou
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Guojun Hu
- Tongwei Solar Co., Ltd, Chengdu 610000, P. R. China
| | - Bing Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, P. R. China
| |
Collapse
|
2
|
Zhang JB, Zou JJ, Dai C, Hu J, You X, Gao MT, Li J, Fu R, Zhang Y, Leong KH, Xu XS. Nanobubbles improve peroxymonosulfate-based advanced oxidation: High efficiency, low toxicity/cost, and novel collaborative mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134499. [PMID: 38759282 DOI: 10.1016/j.jhazmat.2024.134499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024]
Abstract
Cl- activated peroxymonosulfate (PMS) oxidation technology can effectively degrade pollutants, but the generation of chlorinated disinfection byproducts (DBPs) limits the application of this technology in water treatment. In this study, a method of nanobubbles (NBs) synergistic Cl-/PMS system was designed to try to improve this technology. The results showed the synergistic effects of NBs/Cl-/PMS were significant and universal while its upgrade rate was from 12.89% to 34.97%. Moreover, the synergistic effects can be further improved by increasing the concentration and Zeta potential of NBs. The main synergistic effects of NBs/Cl-/PMS system were due to the electrostatic attraction of negatively charged NBs to Na+ from NaCl, K+ from PMS, and H+ from phenol, which acted as a "bridge" between Cl- and HSO5- as well as phenol and Cl-/HSO5-, increasing active substance concentration. In addition, the addition of NBs completely changed the oxidation system of Cl-/PMS from one that increases environmental toxicity to one that reduces it. The reason was that the electrostatic attraction of NBs changed the active sites and degradation pathway of phenol, greatly reducing the production of highly toxic DBPs. This study developed a novel environmentally friendly oxidation technology, which provides an effective strategy to reduce the generation of DBPs in the Cl-/PMS system.
Collapse
Affiliation(s)
- Jun Bo Zhang
- College of Civil Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jia Jie Zou
- College of Civil Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chaomeng Dai
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xueji You
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Rongbing Fu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Kah Hon Leong
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
| | - Xing Song Xu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Tong WK, Dai C, Hu J, Li J, Gao MT, You X, Feng XR, Li Z, Zhou L, Zhang Y, Lai X, Kahon L, Fu R. A novel eco-friendly strategy for removing phenanthrene from groundwater: Synergism of nanobubbles and rhamnolipid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168099. [PMID: 37884130 DOI: 10.1016/j.scitotenv.2023.168099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Nanobubbles (NBs), given their unique properties, could theoretically be paired with rhamnolipids (RL) to tackle polycyclic aromatic hydrocarbon contamination in groundwater. This approach may overcome the limitations of traditional surfactants, such as high toxicity and low efficiency. In this study, the remediation efficiency of RL, with or without NBs, was assessed through soil column experiments (soil contaminated with phenanthrene). Through the analysis of the two-site non-equilibrium diffusion model, there was a synergistic effect between NBs and RL. The introduction of NBs led to a reduction of up to 24.3 % in the total removal time of phenanthrene. The direct reason for this was that with NBs, the retardation factor of RL was reduced by 1.9 % to 15.4 %, which accelerated the solute replacement of RL. The reasons for this synergy were multifaceted. Detailed analysis reveals that NBs improve RL's colloidal stability, increase its absolute zeta potential, and reduce its soil adsorption capacity by 13.3 %-19.9 %. Furthermore, NBs and their interaction with RL substantially diminish the surface tension, contact angle, and dynamic viscosity of the leaching solution. These changes in surface thermodynamic and rheological properties significantly enhance the migration efficiency of the eluent. The research outcomes facilitate a thorough comprehension of NBs' attributes and their relevant applications, and propose an eco-friendly method to improve the efficiency of surfactant remediation.
Collapse
Affiliation(s)
- Wang Kai Tong
- College of Civil Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chaomeng Dai
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xueji You
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Xin Ru Feng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhi Li
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Lang Zhou
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, United States
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaoying Lai
- College of Management and Economics, Tianjin University, Tianjin 300072, China
| | - Long Kahon
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universitiy Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
| | - Rongbing Fu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Kai Tong W, Dai C, Hu J, Li J, Gao MT, Li Z, Zhou L, Zhang Y, Kahon L. Solubilization and remediation of polycyclic aromatic hydrocarbons in groundwater by cationic surfactants coupled nanobubbles: Synergistic mechanism and application. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Cyclic solubilization and release of polycyclic aromatic hydrocarbons (PAHs) using gemini photosensitive surfactant combined with micro-nano bubbles: a promising enhancement technology for groundwater remediation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Guo J, Wang XY, Li T, Gao MT, Hu J, Li J. Effect of micro-nanobubbles with different gas sources on the growth and metabolism of chemoautotrophic microorganisms. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Hou J, Cao M, Duan K, Sun L, Lin S, Zhang M, Li W. Span 80 effect on the solvent extraction for heavy oil recovery. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|