1
|
Gobi R, Babu RS. In-vitro investigation of chitosan/polyvinyl alcohol/TiO 2 composite membranes for wound regeneration. Biochem Biophys Res Commun 2025; 742:151129. [PMID: 39657350 DOI: 10.1016/j.bbrc.2024.151129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Bacterial infections significantly delay the physiological wound healing process and can cause further damage to the wound region. In the current work, we aim to design titanium dioxide nanoparticles (TiO2 NPs) incorporated with chitosan (Chi) and poly (vinyl alcohol) (PVA) film using the casting method and to study their potential for faster wound healing. The prepared TiO2 NPs were analyzed for physicochemical properties, and TEM results showed an average particle size of 39.6 nm. The nanocomposite films were scrutinized by FTIR, XRD, and TGA analyses. The effective incorporation of the nanoparticles and their uniform dispersion within the Chi/PVA matrix was confirmed through SEM analysis. The composite films exhibited excellent hydrophilic properties (64.3°), along with favorable swelling and degradation rates, and mechanical properties similar to native skin tissue, ensuring comfortable interaction with wound beds. The better hemocompatibility, with an erythrocyte lysis percentage of 3.52 %, further supports the wound healing properties of these films. Additionally, composite films possess excellent antibacterial activity against wound pathogens such as B. subtilis and E. coli. Furthermore, an in vitro wound closure rate of 92.3 % at 48 h was observed for the TiO2 incorporated film (CPT3) using fibroblast HIH3T3 cells. The results suggest that it could be a promising biomaterial for wound healing application.
Collapse
Affiliation(s)
- Ravichandhran Gobi
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Ravi Shanker Babu
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
2
|
Unnikrishnan G, Muthuswamy S, Kolanthai E, Megha M, Thomas J, Haris M, Gopinath G, Varghese R, Ayyasamy S. Synthesis and analysis of multifunctional graphene oxide/Ag 2O-PVA/chitosan hybrid polymeric composite for wound healing applications. Int J Biol Macromol 2024; 277:134301. [PMID: 39094875 DOI: 10.1016/j.ijbiomac.2024.134301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
The requirement for accurate treatments for skin diseases and wounds, generated a rising interest towards multifunctional polymer composites, that are capable of mimicking the natural compositions in human body. Also, electroactive composite films disseminate endogenous electrical stimulations that encourage cell migration and its proliferation at wound site, proposing greater opportunities in upgrading the conventional wound patches. In this work, the composite film made of graphene oxide, Ag2O, PVA and chitosan were developed for wound healing applications, by the solution casting method. The even dispersibility of nanofiller in polymeric matrix was validated from the physicochemical analyses. The increment in roughness of the composite film surface was noted from AFM images. The thermal stability and porous nature of the polymer composite were also verified. A conductivity value of 0.16 × 10-4 Scm-1 was obtained for the film. From MTT assay, it was noted that the films were non-cytotoxic and supported cell adhesion along with cell proliferation of macrophage (RAW 264.7) cells. Moreover, the composite film also demonstrated non-hemolytic activity of <2 %, as well as excellent antibacterial activity towards E. coli and S. aureus. Thus, the obtained results validated that the prepared composite film could be chosen as an innovative candidate for developing state-of-the-art wound dressings.
Collapse
Affiliation(s)
- Gayathri Unnikrishnan
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | | | - Elayaraja Kolanthai
- Department of Materials Sciences and Engineering, Advanced Materials Processing and Analysis Centre, University of Central Florida, Orlando, FL, USA.
| | - M Megha
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Jibu Thomas
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - M Haris
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Gokul Gopinath
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Rojin Varghese
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sakunthala Ayyasamy
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
3
|
Won M, Sim J, Oh G, Jung M, Mantry SP, Kim DS. Fabrication of a Fully Printed Ammonia Gas Sensor Based on ZnO/rGO Using Ultraviolet-Ozone Treatment. SENSORS (BASEL, SWITZERLAND) 2024; 24:1691. [PMID: 38475227 DOI: 10.3390/s24051691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
In this study, a room-temperature ammonia gas sensor using a ZnO and reduced graphene oxide (rGO) composite is developed. The sensor fabrication involved the innovative application of reverse offset and electrostatic spray deposition (ESD) techniques to create a ZnO/rGO sensing platform. The structural and chemical characteristics of the resulting material were comprehensively analyzed using XRD, FT-IR, FESEM, EDS, and XPS, and rGO reduction was achieved via UV-ozone treatment. Electrical properties were assessed through I-V curves, demonstrating enhanced conductivity due to UV-ozone treatment and improved charge mobility from the formation of a ZnO-rGO heterojunction. Exposure to ammonia gas resulted in increased sensor responsiveness, with longer UV-ozone treatment durations yielding superior sensitivity. Furthermore, response and recovery times were measured, with the 10 min UV-ozone-treated sensor displaying optimal responsiveness. Performance evaluation revealed linear responsiveness to ammonia concentration with a high R2 value. The sensor also exhibited exceptional selectivity for ammonia compared to acetone and CO gases, making it a promising candidate for ammonia gas detection. This study shows the outstanding performance and potential applications of the ZnO/rGO-based ammonia gas sensor, promising significant contributions to the field of gas detection.
Collapse
Affiliation(s)
- Mijin Won
- Department of Creative Convergence Engineering, Hanbat National University, Yuseong-gu, Daejeon 305-719, Republic of Korea
| | - Jaeho Sim
- Department of Creative Convergence Engineering, Hanbat National University, Yuseong-gu, Daejeon 305-719, Republic of Korea
| | - Gyeongseok Oh
- Department of Creative Convergence Engineering, Hanbat National University, Yuseong-gu, Daejeon 305-719, Republic of Korea
| | - Minhun Jung
- Research Institute of Printed Electronics & 3D Printing, Hanbat National University, Yuseng-gu, Daejeon 305-719, Republic of Korea
| | - Snigdha Paramita Mantry
- Research Institute of Printed Electronics & 3D Printing, Hanbat National University, Yuseng-gu, Daejeon 305-719, Republic of Korea
| | - Dong-Soo Kim
- Department of Creative Convergence Engineering, Hanbat National University, Yuseong-gu, Daejeon 305-719, Republic of Korea
| |
Collapse
|
4
|
Kumar AS, Prema D, Rao RG, Prakash J, Balashanmugam P, Devasena T, Venkatasubbu GD. Fabrication of poly (lactic-co-glycolic acid)/gelatin electro spun nanofiber patch containing CaCO 3/SiO 2 nanocomposite and quercetin for accelerated diabetic wound healing. Int J Biol Macromol 2024; 254:128060. [PMID: 37963500 DOI: 10.1016/j.ijbiomac.2023.128060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/09/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
An open wound or sore on the bottom of the foot caused by diabetes is known as a diabetic foot ulcer. Preventive measures are essential, including consistent foot care and glycemic management. The dangers associated with diabetic foot ulcers can be reduced via early identification and timely treatment. The risk of foot ulcers and limb amputation increases with age and duration of diabetes. Quercetin contains anti-inflammatory and antioxidant properties. Furthermore, the calcium carbonate/silica (CaCO3/SiO2) nanocomposite has a good anti-inflammatory property due to the presence of calcium, which will aid in wound healing. As a result, combining quercetin (plant based anti-inflammatory drug) and CaCO3/SiO2 nanocomposite will boost the wound healing rate. We have synthesized CaCO3/SiO2 nanocomposite in sol-gel method and characterized using XRD, FTIR and TEM. Cell line tests and the MTT assay revealed that the PLGA/gelatin/CaCO3/SiO2/quercetin patch enhanced the proliferation of cells. Its anti-bacterial efficacy against four major bacterial strains often found in wound locations, as well as its water retention, make it an ideal material for diabetic wound healing. In-vivo trials confirms the enhanced diabetic wound healing potential of the patch.
Collapse
Affiliation(s)
- Ajay S Kumar
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603 203, India
| | - D Prema
- Department of Biomedical engineering, Karpagam academy of higher education, Pollachi Main Road, Eachanari Post, Coimbatore 641 021, Tamil Nadu, India
| | - R Gagana Rao
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603 203, India
| | - J Prakash
- Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India
| | | | - T Devasena
- Centre for Nanoscience and Technology, Anna University, Chennai, Tamil Nadu, India
| | - G Devanand Venkatasubbu
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603 203, India.
| |
Collapse
|
5
|
Safarpour F, Kharaziha M, Mokhtari H, Emadi R, Bakhsheshi-Rad HR, Ramakrishna S. Kappa-carrageenan based hybrid hydrogel for soft tissue engineering applications. Biomed Mater 2023; 18:055005. [PMID: 37348489 DOI: 10.1088/1748-605x/ace0ec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Abstract
Biological materials such as cell-derived membrane vesicles have emerged as alternative sources for molecular delivery systems, owing to multicomponent features, the inherent functionalities and signaling networks, and easy-to-carry therapeutic agents with various properties. Herein, red blood cell membrane (RBCM) vesicle-laden methacrylate kappa-carrageenan (KaMA) composite hydrogel is introduced for soft tissue engineering. Results revealed that the characteristics of hybrid hydrogels were significantly modulated by changing the RBCM vesicle content. For instance, the incorporation of 20% (v/v) RBCM significantly enhanced compressive strength from 103 ± 26 kPa to 257 ± 18 kPa and improved toughness under the cyclic loading from 1.0 ± 0.4 kJ m-3to 4.0 ± 0.5 kJ m-3after the 5thcycle. RBCM vesicles were also used for the encapsulation of curcumin (CUR) as a hydrophobic drug molecule. Results showed a controlled release of CUR over three days of immersion in PBS solution. The RBCM vesicles laden KaMA hydrogels also supportedin vitrofibroblast cell growth and proliferation. In summary, this research sheds light on KaMA/RBCM hydrogels, that could reveal fine-tuned properties and hydrophobic drug release in a controlled manner.
Collapse
Affiliation(s)
- F Safarpour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - M Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - H Mokhtari
- Division of Polymer Chemistry, Department of Chemistry-Ångstrom Laboratory, Uppsala University, Uppsala 75121, Sweden
| | - R Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - H R Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Seeram Ramakrishna
- Nanoscience and Nanotechnology Initiative, National University of Singapore, 9 Engineering Drive 1, Singapore 1157, Singapore
| |
Collapse
|