1
|
Cheng K, Zhao K, Zhang R, Guo J. Progress on control of harmful algae by sustained-release technology of allelochemical: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170364. [PMID: 38307275 DOI: 10.1016/j.scitotenv.2024.170364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
The outbreak of harmful algae blooms caused by water eutrophication seriously jeopardizes the aquatic ecological environment and human health. Therefore, algae control technology has attracted widespread attention between environmental scholars. Allelochemical sustained-release technology which releases the active ingredient to the target medium at a certain rate within the effective time, so that the system maintains a certain concentration, thus prolonging its influence on the target organism. Allelochemical sustained-release technology has become the focus of research due to the characteristics of high efficiency, safety, low-cost, environment friendly and no secondary pollution. This paper reviews the characteristics of allelochemical substances and the status quo of plant extraction, explains the detailed classification of allelochemical sustained-release microspheres (ASRMs) and the application of algae inhibition, summarizes the preparation method of ASRMs, elaborates on the mechanism of algae inhibition of sustained-release technology from the perspective of photosynthesis, cellular enzyme activity, algae cell structure, gene expression, and target site action. Focuses on the summary of the factors influencing the effect of algae inhibition of ASRMs, including particle size of sustained-release microspheres, selection of carrier materials, and the growth stage of algae. The future direction and prospect of algae inhibition by allelochemical sustained-release technology were prospected to provide the scientific basis for water ecological restoration.
Collapse
Affiliation(s)
- Kai Cheng
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Kai Zhao
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Rong Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Jifeng Guo
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an 710054, PR China.
| |
Collapse
|
2
|
Ding S, Serra CA, Vandamme TF, Yu W, Anton N. Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective. J Control Release 2019; 295:31-49. [DOI: 10.1016/j.jconrel.2018.12.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022]
|
3
|
Roy A, Murcia Valderrama MA, Daujat V, Ferji K, Léonard M, Durand A, Babin J, Six JL. Stability of a biodegradable microcarrier surface: physically adsorbed versus chemically linked shells. J Mater Chem B 2018; 6:5130-5143. [PMID: 32254540 DOI: 10.1039/c8tb01255e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesenchymal stem cells (MSCs) have gained increasing interest for tissue engineering and cellular therapy. MSC expansion on microcarriers (MCs) in stirred bioreactors has emerged as an attractive method for their scaled up production. Some MCs have been developed based on polyesters as a hydrophobic biodegradable core. However, most of these MCs are formulated by an emulsion/organic solvent evaporation (E/E) process using poly(vinyl alcohol) as a shell steric stabilizer, which is biocompatible but not degradable in vivo. Moreover, in most of these MCs, the polymer shell is only physically adsorbed at the particle surface. To the best of our knowledge, no study deals with the stability of such a shell when the MCs are in contact with competitive surfactants or with proteins contained in the culture medium. In this study, fully in vivo bioresorbable dextran-covered polylactide-based MCs were formulated using an E/E process, which allowed to control their surface chemistry. Different dextran derivatives with alkyne or ammonium groups were firstly synthesised. Then, on the one hand, some MCs (non-clicked MCs) were formulated with a physically adsorbed polysaccharide shell onto the core. On the other hand, the polysaccharide shell was linked to the core via in situ CuAAC click-chemistry carried out during the E/E process (clicked MCs). The stability of such coverage was first studied in the presence of competitive surfactants (sodium dodecyl sulfate-SDS, or proteins contained in the culture medium) using nanoparticles (NPs) exhibiting the same chemical composition (core/shell) as MCs. The results revealed the total desorption of the dextran shell for non-clicked NPs after treatment with SDS or the culture medium, while this shell desorption was greatly decreased for clicked NPs. A qualitative study of this shell stability was finally carried out on MCs formulated using a new fluorescent dextran-based surfactant. The results were in agreement with those observed for NPs, and showed that non-clicked MCs are characterized by poor shell stability in contact with a competitive surfactant, which could be quite an issue during MSC expansion. In contrast, clicked MCs possess better shell stability, which allow a better control of the MC surface chemistry, especially during cell culture.
Collapse
Affiliation(s)
- Audrey Roy
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Light-sensitive dextran-covered PNBA nanoparticles as triggered drug delivery systems: Formulation, characteristics and cytotoxicity. J Colloid Interface Sci 2018; 514:289-298. [DOI: 10.1016/j.jcis.2017.12.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/27/2022]
|
5
|
|
6
|
WITHDRAWN: Polymer assembly: Promising carriers as co-delivery systems for cancer therapy. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2015.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Fernandes LS, Cellet TS, Souza EM, Sayer C, Rubira AF, Dariva C, Oliveira JA. Development of a system by atomization for the formation of polymeric particles in micro and sub-micro scales. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Niu X, Zou W, Liu C, Zhang N, Fu C. Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles. Drug Dev Ind Pharm 2010; 35:1375-83. [PMID: 19832638 DOI: 10.3109/03639040902939221] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The objective of this study was to formulate DNA-loaded poly(d,l-lactide-co-glycotide) (PLGA) nanoparticles by a modified nanoprecipitation method. METHODS DNA-loaded PLGA nanoparticles were prepared by the modified nanoprecipitation method and the double emulsion/solvent evaporation method. The characterizations of DNA-loaded nanoparticles such as entrapment efficiency, morphology, particle size, zeta potential, structural integrity of the loaded DNA, and stability of the loaded DNA in PLGA nanoparticles against DNase I, in vitro release, cell viability and in vitro transfection capability were investigated. RESULTS The resulted PLGA nanoparticles by the modified nanoprecipitation method had uniform spherical shape, narrow size distribution with average particles size near 200 nm, negative zeta potential of -12.6 mV at pH 7.4, and a sustained-release property in vitro. Plasmid DNA could be efficiently encapsulated into PLGA nanoparticles (> 95%) without affecting its intact conformation using this modified nanoprecipitation method, which was superior to the double emulsion/solvent evaporation method. The PLGA nanoparticles were much safer to A549 cell compared to commercial Lipofectamine 2000 and could successfully transfer plasmid-enhanced green fluorescent protein into A549 cells. CONCLUSION In conclusion, the modified nanoprecipitation method could be applied as an efficient way to fabricate DNA-loaded PLGA nanoparticles instead of the conventional double emulsion/solvent evaporation method.
Collapse
Affiliation(s)
- Xiuming Niu
- Department of Pharmacy, Shandong Medical College, Ji'nan, Shandong Province, PR China
| | | | | | | | | |
Collapse
|
9
|
Xu B, Dou H, Tao K, Sun K, Lu R, Shi W. Influence of experimental parameters and the copolymer structure on the size control of nanospheres in double emulsion method. JOURNAL OF POLYMER RESEARCH 2010. [DOI: 10.1007/s10965-010-9399-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Yamanaka YJ, Leong KW. Engineering strategies to enhance nanoparticle-mediated oral delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2009; 19:1549-70. [PMID: 19017470 DOI: 10.1163/156856208786440479] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oral delivery is the most preferred route of drug administration due to convenience, patient compliance and cost-effectiveness. Despite these advantages it remains difficult to achieve satisfactory bioavailability levels via oral administration due to the harsh environment of the gastrointestinal (GI) tract, particularly for biomacromolecules. One promising method to increase the bioavailability of macromolecular drugs such as proteins and nucleic acids is to encapsulate them in nanoparticles before oral administration. This review describes innovative strategies for increasing the efficacy of nanoparticle-mediated delivery to the GI tract. Approaches to optimize nanoparticle formulation by exploiting mucoadhesion, environmental responsiveness and external delivery control mechanisms are discussed. The application of recent advances in nanoparticle synthesis using supercritical fluids, microfluidics and imprint lithography to oral delivery are also presented, as well as possible strategies for incorporating nanoparticles into micro- and macroscale oral delivery devices.
Collapse
Affiliation(s)
- Yvonne J Yamanaka
- Department of Biomedical Engineering, Department of Surgery, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
11
|
Lipp J, Makarov C, Khalfin RL, Shuster M, Berenstein L, Melamed O, Odani A, Zaban A, Cohen Y. Evaluation of nanoparticle dispersion in polypropylene by small-angle X-ray scattering. J Appl Polym Sci 2008. [DOI: 10.1002/app.28065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Wei Q, Wei W, Tian R, Wang LY, Su ZG, Ma GH. Preparation of uniform-sized PELA microspheres with high encapsulation efficiency of antigen by premix membrane emulsification. J Colloid Interface Sci 2008; 323:267-73. [DOI: 10.1016/j.jcis.2008.04.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 04/17/2008] [Accepted: 04/19/2008] [Indexed: 11/28/2022]
|
13
|
Chognot D, Six JL, Léonard M, Dellacherie E, Faivre B, Bonneaux F, Vigneron C. Synthesis and In vivo Studies of Protein C-loaded Nanoparticles with PEO Modified Surfaces. J BIOACT COMPAT POL 2008. [DOI: 10.1177/0883911507085280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein C-loaded nanoparticles coated with monomethoxypoly (ethylene oxide) (MPEO) were prepared by double emulsion/solvent evaporation using water-soluble biocompatible copolymers of MPEO and polylactide, as surfactants of the secondary emulsion. The nanoparticle preparation was optimized to obtain the best yield of encapsulated protein C and provide the greatest retention of its biological activity. The nanoparticles were characterized in terms of size, zeta potential, and thickness of the MPEO external layer. Protein C-loaded nanoparticles were injected into the bloodstream of guinea pigs and the protein concentration in plasma is measured as a function of time. After a rapid release corresponding to 20% of the injected protein, the protein plasma concentration progressively decreased and reached a value close to zero after 5 h. Consequently, the in vivo fate of the fluorescent nanoparticles coated with or without MPEO is studied. The uncoated nanoparticles were rapidly captured by the circulating granulocytes while the coated ones were not. The histological analysis of the spleen, 1 hour after injection, showed that the MPEO-coated particles were retained in this organ, while the uncoated ones were not captured.
Collapse
Affiliation(s)
- David Chognot
- Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568 ENSIC, BP 20451, 54001 Nancy Cedex, France
| | - Jean-Luc Six
- Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568 ENSIC, BP 20451, 54001 Nancy Cedex, France
| | - Michèle Léonard
- Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568 ENSIC, BP 20451, 54001 Nancy Cedex, France
| | - Edith Dellacherie
- Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568 ENSIC, BP 20451, 54001 Nancy Cedex, France, edith.dellacherie@ ensic.inpl-nancy.fr
| | - Béatrice Faivre
- Mise en forme et évaluation de matériaux d'intérêt thérapeutique et biologique, EA 3452, Faculté de Pharmacie, BP 403, 54001 NANCY Cedex, France
| | - François Bonneaux
- Mise en forme et évaluation de matériaux d'intérêt thérapeutique et biologique, EA 3452, Faculté de Pharmacie, BP 403, 54001 NANCY Cedex, France
| | - Claude Vigneron
- Mise en forme et évaluation de matériaux d'intérêt thérapeutique et biologique, EA 3452, Faculté de Pharmacie, BP 403, 54001 NANCY Cedex, France
| |
Collapse
|
14
|
Laroui H, Grossin L, Léonard M, Stoltz JF, Gillet P, Netter P, Dellacherie E. Hyaluronate-covered nanoparticles for the therapeutic targeting of cartilage. Biomacromolecules 2007; 8:3879-85. [PMID: 18039001 DOI: 10.1021/bm700836y] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hyaluronic acid (HA) has a high affinity for the CD44 receptor present at the surface of articular cells, particularly of chondrocytes. HA-covered polylactide nanoparticles containing bioactive compounds such as HA and chondroitin sulfate (CS) were thus prepared in order to achieve a controlled delivery targeted to cartilage cells after injection near articular alterations/erosions. Such nanoparticles (diameter = 700 nm) were prepared by double emulsion/solvent evaporation, using amphiphilic derivatives of HA, as stabilizer of the secondary emulsion. These nanoparticles were incubated with articular cells, and several tests were carried out. First, they proved that the nanospheres provoked no decrease in cell viability, even after 72 h of contact. Second, a confocal microscopy analysis on fluorescent HA-covered particles showed that they were captured by articular cells, while with those covered with poly(vinyl alcohol), the uptake was far lower. Third, a scattering electron microscopy analysis proved that the HA-coated nanoparticles were localized in the cell intracytoplasmic area.
Collapse
Affiliation(s)
- Hamed Laroui
- Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568, BP 20451, 54001 Nancy Cedex, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Aumelas A, Serrero A, Durand A, Dellacherie E, Leonard M. Nanoparticles of hydrophobically modified dextrans as potential drug carrier systems. Colloids Surf B Biointerfaces 2007; 59:74-80. [PMID: 17560095 DOI: 10.1016/j.colsurfb.2007.04.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 04/24/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
Nanoparticles combining a hydrophobically modified dextran core and a polysaccharide surface coverage were elaborated. Their suitability for applications like drug delivery was evaluated. The selected polysaccharide, dextran, was chemically modified by the covalent attachment of hydrocarbon groups (aliphatic or aromatic) via the formation of ether links. According to the extent of modification, either water-soluble or water-insoluble dextran derivatives were obtained. The latter exhibited solubility in organic solvents like tetrahydrofuran or dichloromethane saturated with water. Water-soluble dextran derivatives were used as polymeric surfactants for the control of nanoparticles surface characteristics. Nanoparticles were prepared either by o/w emulsion or solvent-diffusion methods. The size and surface properties of dextran nanoparticles were correlated to processing conditions. The stability of colloidal suspensions was examined as a function of ionic strength and related to the particle surface characteristics. The redispersability of freeze-dried suspensions without the addition of cryoprotectant was demonstrated. Finally, the degradability of modified dextrans was compared to that of starting dextran, after enzymatic hydrolysis in the presence of dextranase.
Collapse
Affiliation(s)
- A Aumelas
- Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-Nancy University, ENSIC, BP 20451, 54001 Nancy Cedex, France
| | | | | | | | | |
Collapse
|