1
|
Wu Z, Li H, Zhao X, Ye F, Zhao G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydr Polym 2022; 284:119182. [DOI: 10.1016/j.carbpol.2022.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023]
|
2
|
Maingret V, Chartier C, Six JL, Schmitt V, Héroguez V. Pickering emulsions stabilized by biodegradable dextran-based nanoparticles featuring enzyme responsiveness and co-encapsulation of actives. Carbohydr Polym 2022; 284:119146. [DOI: 10.1016/j.carbpol.2022.119146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
|
3
|
Angel N, Li S, Yan F, Kong L. Recent advances in electrospinning of nanofibers from bio-based carbohydrate polymers and their applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Fatma I, Sharma V, Thakur RC, Kumar A. Current trends in protein-surfactant interactions: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
5
|
Recent updates in the polysaccharides-based Nano-biocarriers for drugs delivery and its application in diseases treatment: A review. Int J Biol Macromol 2021; 182:115-128. [PMID: 33836188 DOI: 10.1016/j.ijbiomac.2021.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 01/02/2023]
Abstract
With people's increasing awareness of diseases treatment, the researchers began to focus on drug delivery to the exact site of action at the optimal rate. Some researchers have proved that many nanostructures loaded with drugs are significantly better than conventional nanostructures. However, the materials from which the nanostructure determines its performance. To use it as a pharmaceutical ingredient, it must meet strict safety regulatory standards worldwide. Therefore, people's attention has paid to easily available natural substances. As far as we know, bioactive polysaccharides are excellent candidates for realizing these purposes. To be precise, due to the natural availability of polysaccharides, it has been widely used in the research of Nano-biocarriers loaded with drugs. Based on the above analysis, the nanomaterials developed through the laboratory have great potential for upgrading to market products. Therefore, it is of great significance to review the latest progress of polysaccharide-based Nano-biocarriers in drug delivery and their application in diseases treatment. In this work, we focused on the preparation of polysaccharides-based Nano-biocarriers, commonly used polysaccharides for preparing Nano-biocarriers, and drugs loaded on polysaccharides-based Nano-biocarriers to treat diseases. Shortly, polysaccharide-based Nano-biocarriers will be increasingly used in drug delivery and treatment of diseases.
Collapse
|
6
|
Jiang L, Yao H, Luo X, Zou D, Dai S, Liu L, Yang P, Zhao A, Huang N. Polydopamine-Modified Copper-Doped Titanium Dioxide Nanotube Arrays for Copper-Catalyzed Controlled Endogenous Nitric Oxide Release and Improved Re-Endothelialization. ACS APPLIED BIO MATERIALS 2020; 3:3123-3136. [PMID: 35025356 DOI: 10.1021/acsabm.0c00157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The controllable release is necessary for ideal drug delivery technologies. Because of their high specific surface area and high porosity, titanium dioxide nanotubes (TNTs) have been widely used as drug carriers in medical devices. By loading copper as the catalyst, nitric oxide (NO) generation was facilitated by catalyzing the decomposition of renewable endogenous NO donors in vivo. Herein, the long-term controllable release profile of NO is highlighted owing to the multilayer polydopamine (PDA) cap structure. Different layers of PDA are used to adjust the NO release behavior, and the results show that three layers of PDA can not only effectively prevent the burst release of NO but also maintain long-term stable release of copper ion and NO. The bioactivity of the NO generated from three-layer PDA-modified copper-loaded TNTs (PDA-3L-NTCu2) and unmodified copper-loaded TNTs (NTCu2) are verified by our work, indicating effective inhibition of platelet activation, thrombosis, inflammation, and intimal hyperplasia. Importantly, the PDA-3L-NTCu2 show selectively promote the growth of endothelial cells in vitro and outstanding re-endothelialization for 4 weeks in vivo, as compared to NTCu2, TNTs, and 316L stain steel. This study suggests that copper-loaded with PDA modification helps us achieve controlled long-term stable local NO release with well-retained bioactivity and enhanced re-endothelialization.
Collapse
Affiliation(s)
- Lang Jiang
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Hang Yao
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Xiao Luo
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Dan Zou
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Shen Dai
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Luying Liu
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Ping Yang
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Ansha Zhao
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Nan Huang
- Key Laboratory of Advanced Technology for Materials of the Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| |
Collapse
|
7
|
Gericke M, Schulze P, Heinze T. Nanoparticles Based on Hydrophobic Polysaccharide Derivatives-Formation Principles, Characterization Techniques, and Biomedical Applications. Macromol Biosci 2020; 20:e1900415. [PMID: 32090505 DOI: 10.1002/mabi.201900415] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/09/2020] [Indexed: 12/13/2022]
Abstract
Polysaccharide (PS) nanoparticles (NP) are fascinating materials that combine huge application potential with the unique beneficial features of natural biopolymers. Different types of PS-NP can be distinguished depending on the basic preparation principles (top-down vs bottom-up vs coating of nanomaterials) and the material from which they are obtained (native PS vs chemically modified PS derivatives vs nanocomposites). This review provides a comprehensive overview of an approach towards PS-NP that has gained rapidly increasing interest within the last decade; the nanoself-assembling of hydrophobic PS derivatives. This facile process is easy to perform and offers a broad structural diversity in terms of the PS backbone and the additional functionalities that can be introduced. Fundamental principles of different NP preparation techniques along with useful characterization methods are presented in this work. A comprehensive summary of PS-NP prepared by different techniques and with various PS backbones and types/amounts of hydrophobic substituents is given. The intention is to demonstrate how different parameters determine the size, size distribution, and zeta-potential of the particles. Moreover, application trends in biomedical areas are highlighted in which tailored functional PS-NP are evaluated and constantly developed further.
Collapse
Affiliation(s)
- Martin Gericke
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Peter Schulze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Thomas Heinze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| |
Collapse
|
8
|
Hydrophobically modified inulin-based micelles: Transport mechanisms and drug delivery applications for breast cancer. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Zuppolini S, Maya IC, Diodato L, Guarino V, Borriello A, Ambrosio L. Self-associating cellulose-graft-poly(ε-caprolactone) to design nanoparticles for drug release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110385. [PMID: 31923967 DOI: 10.1016/j.msec.2019.110385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/19/2019] [Accepted: 10/30/2019] [Indexed: 01/08/2023]
Abstract
The growing interest in the use of polysaccharides nanoparticles for biomedical applications is related to the recent progresses on the synthesis of cellulose-based polymers with the specific functionalities. In particular, cellulose graft copolymers are emerging as amphiphilic materials suitable to fabricate smart nanoparticles for drug delivery applications. In this work, a cellulose-graft-poly(ε-caprolactone) (cell-g-PCL) was synthetized and characterized by FTIR, TGA and DSC in order to validate the synthesis process. We demonstrated that fast evaporation processes promoted cell-g-PCL self-assembly to form nanomicellar structures with hydrodynamic radius ranged from 30 to 60 nm as confirmed by TEM analysis. Moreover, the application of controlled electrostatic forces on solvent evaporation - namely electrospraying - allowed generating round-like nanoscaled particles, as confirmed by SEM supported via image analysis. We demonstrated also that sodium diclofenac (DS) drastically influenced the mechanism of particle formation, favoring the deposition of erythrocyte-like particles with highly concave surfaces, not penalizing the encapsulation efficiency of nanoparticles (>80%). The release profile showed a fast delivery of DS - about 60% during the first 24 h - followed by a sustained release - about 20% during the next 6 days - strictly related to the peculiar weak interactions among amphiphilic polymer segments and water molecules, thus suggesting a successful use of electrosprayed cell-g-PCL nanoparticles for therapeutic treatments in nanomedicine.
Collapse
Affiliation(s)
- Simona Zuppolini
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d'Oltremare, V.le J.F. Kennedy 54, 80125, Naples, Italy
| | - Iriczalli Cruz Maya
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d'Oltremare, V.le J.F. Kennedy 54, 80125, Naples, Italy
| | - Laura Diodato
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d'Oltremare, V.le J.F. Kennedy 54, 80125, Naples, Italy
| | - Vincenzo Guarino
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d'Oltremare, V.le J.F. Kennedy 54, 80125, Naples, Italy.
| | - Anna Borriello
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d'Oltremare, V.le J.F. Kennedy 54, 80125, Naples, Italy.
| | - Luigi Ambrosio
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d'Oltremare, V.le J.F. Kennedy 54, 80125, Naples, Italy
| |
Collapse
|
10
|
Sar P, Ghosh A, Scarso A, Saha B. Surfactant for better tomorrow: applied aspect of surfactant aggregates from laboratory to industry. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04017-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
El Baihary D, Osman R, Abdel-Bar HM, Sammour OA. Pharmacokinetic/pulmokinetic analysis of optimized lung targeted spray dried ketotifen-dextran core shell nanocomplexes–in-microparticles. Int J Biol Macromol 2019; 139:678-687. [DOI: 10.1016/j.ijbiomac.2019.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 11/27/2022]
|
12
|
|
13
|
Riaz T, Iqbal MW, Saeed M, Yasmin I, Hassanin HAM, Mahmood S, Rehman A. In vitro survival of Bifidobacterium bifidum microencapsulated in zein-coated alginate hydrogel microbeads. J Microencapsul 2019; 36:192-203. [DOI: 10.1080/02652048.2019.1618403] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Waheed Iqbal
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saeed
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Iqra Yasmin
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Department of Diet and Nutritional Science, Faculty of Health and Allied Science, Imperial College of Business Studies, Lahore, Pakistan
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Hinawi A. M. Hassanin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
14
|
Bostanudin MF, Arafat M, Sarfraz M, Górecki DC, Barbu E. Butylglyceryl Pectin Nanoparticles: Synthesis, Formulation and Characterization. Polymers (Basel) 2019; 11:E789. [PMID: 31052540 PMCID: PMC6571649 DOI: 10.3390/polym11050789] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 11/24/2022] Open
Abstract
Pectin is a polysaccharide with very good gel forming properties that traditionally has found important applications in foods and pharmaceutical industries. Although less studied, chemical modifications of pectin leading to a decrease in its hydrophilicity can be useful for the development of novel drug carriers. To this aim, butylglyceryl pectins (P-OX4) were synthesized via functionalization with n-butylglycidyl ether and subsequently formed into nanoparticles. Chromatographic, spectroscopic, and thermal analytical methods were employed to characterize the novel butylglyceryl pectins (P-OX4) obtained, prior to their formulation into nanoparticles via nanoprecipitation. Nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectroscopy confirmed a degree of modification in these materials in the range 10.4-13.6%, and thermal stability studies indicated an increase in both the thermal decomposition onset and glass transition temperature values (compared to those of the original pectin). An increase in the molecular weight and a decrease in the viscosity of P-OX4, when compared to the starting material, were also observed. The resulting nanoformulations were investigated in terms of particle morphology, size and stability, and it was found that particles were roughly spherical, with their size below 300 nm, and a negative zeta potential (-20 to -26 mV, indicating good stability). Having demonstrated the ability to load Doxorubicin at the level of 10%, their potential in drug delivery applications warrants further investigations.
Collapse
Affiliation(s)
- Mohammad F Bostanudin
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi 112612, UAE.
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, Portsmouth PO1 2DT, UK.
| | - Mosab Arafat
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain 64141, UAE.
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain 64141, UAE.
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, Portsmouth PO1 2DT, UK.
| | - Eugen Barbu
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, Portsmouth PO1 2DT, UK.
| |
Collapse
|
15
|
Laha B, Das S, Maiti S, Sen KK. Novel propyl karaya gum nanogels for bosentan: In vitro and in vivo drug delivery performance. Colloids Surf B Biointerfaces 2019; 180:263-272. [PMID: 31059984 DOI: 10.1016/j.colsurfb.2019.04.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/31/2019] [Accepted: 04/29/2019] [Indexed: 01/21/2023]
Abstract
The amphiphilic propyl Karaya gum (KG) with a degree of propyl group substitution of 3.24 was synthesized to design self-assembled nanogels as carriers for bosentan monohydrate, a poorly soluble antihypertensive drug. The drug was physically hosted into the hydrophobic core of the micellar nanogels by solvent evaporation method. TEM images revealed spherical shape and core-shell morphology of the nanogels. Depending upon polymer: drug weight ratio, the drug entrapment efficiency of >85% was attained. The carriers had hydrodynamic diameter in the range of 230-305 nm with narrow size distribution. The zeta potential of -23.0 to -24.9 mV and low critical association concentration (CAC) of 8.32 mg/l provided evidence that the colloidal nanogel system was physically stable. Thermodynamics of the propyl KG system in water favored spontaneous self-assembly of propyl KG. FTIR, thermal and x-ray analyses suggested that the drug was compatible in the hydrophobic confines of the nanogels. The micellar nanogels liberated their contents in simulated gastrointestinal condition in a pH-dependent manner over a period of 10 h. Peppas-Sahlin modeling of in vitro drug release data suggested that the polymer relaxation/swelling mechanism dominated the drug release process. Pre-clinical testing of the mucoadhesive nanogel formulations exhibited that the system could monitor the anti-hypertensive activity for a prolonged period. Overall, this propyl KG micellar nanogel system had a great potential and splendid outlook to serve as novel oral controlled release carriers for poorly soluble drugs with outstanding pharmacodynamics.
Collapse
Affiliation(s)
- Bibek Laha
- Department of Pharmaceutics, Gupta College of Technological Sciences, Ashram More, G.T. Road, Asansol, 713301, West Bengal, India(1)
| | - Sanjib Das
- Department of Pharmaceutics, Gupta College of Technological Sciences, Ashram More, G.T. Road, Asansol, 713301, West Bengal, India(1)
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India.
| | - Kalyan Kumar Sen
- Department of Pharmaceutics, Gupta College of Technological Sciences, Ashram More, G.T. Road, Asansol, 713301, West Bengal, India(1)
| |
Collapse
|
16
|
Kashyap A, Kaur R, Baldi A, Jain UK, Chandra R, Madan J. Chloroquine diphosphate bearing dextran nanoparticles augmented drug delivery and overwhelmed drug resistance in Plasmodium falciparum parasites. Int J Biol Macromol 2018; 114:161-168. [DOI: 10.1016/j.ijbiomac.2018.03.102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/17/2018] [Accepted: 03/19/2018] [Indexed: 11/25/2022]
|
17
|
Carboxymethyl cellulose-rosin gum hybrid nanoparticles: An efficient drug carrier. Int J Biol Macromol 2018; 112:390-398. [DOI: 10.1016/j.ijbiomac.2018.01.184] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/15/2018] [Accepted: 01/28/2018] [Indexed: 02/05/2023]
|
18
|
An α-1,6-and α-1,3-linked glucan produced by Leuconostoc citreum ABK-1 alternansucrase with nanoparticle and film-forming properties. Sci Rep 2018; 8:8340. [PMID: 29844508 PMCID: PMC5974361 DOI: 10.1038/s41598-018-26721-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/16/2018] [Indexed: 01/14/2023] Open
Abstract
Alternansucrase catalyses the sequential transfer of glucose residues from sucrose onto another sucrose molecule to form a long chain polymer, known as “alternan”. The alternansucrase-encoding gene from Leuconostoc citreum ABK-1 (Lcalt) was successfully cloned and expressed in Escherichia coli. Lcalt encoded LcALT of 2,057 amino acid residues; the enzyme possessed an optimum temperature and pH of 40 °C and 5.0, respectively, and its’ activity was stimulated up to 2.4-fold by the presence of Mn2+. Kinetic studies of LcALT showed a high transglycosylation activity, with Km 32.2 ± 3.2 mM and kcat 290 ± 12 s−1. Alternan generated by LcALT (Lc-alternan) harbours partially alternating α-1,6 and α- 1,3 glycosidic linkages confirmed by NMR spectroscopy, methylation analysis, and partial hydrolysis of Lc-alternan products. In contrast to previously reported alternans, Lc-alternan can undergo self-assembly, forming nanoparticles with an average size of 90 nm in solution. At concentrations above 15% (w/v), Lc-alternan nanoparticles disassemble and form a high viscosity solution, while this polymer forms a transparent film once dried.
Collapse
|
19
|
Yang Y, Li X, Qiu H, Li P, Qi P, Maitz MF, You T, Shen R, Yang Z, Tian W, Huang N. Polydopamine Modified TiO 2 Nanotube Arrays for Long-Term Controlled Elution of Bivalirudin and Improved Hemocompatibility. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7649-7660. [PMID: 28845974 DOI: 10.1021/acsami.7b06108] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Sustained and controllable release characteristics are pivotal factors for novel drug delivery technologies. TiO2 nanotube arrays prepared by self-ordering electrochemical anodization are attractive for the development of biomedical devices for local drug delivery applications. In this work, several layers of polydopamine (PDA) were deposited to functionalize TiO2 nanotube arrays. The anticoagulant drug bivalirudin (BVLD) was used as a model drug. PDA extended the release period of BVLD and maintained a sustained release kinetic. Depending on the number of PDA layers, the release characteristics of BVLD improved, as there was a reduced burst release (from 45% to 11%) and extended overall release period from 40 days to more than 300 days in the case of 5 layers. Besides, the BVLD loaded 5-layer PDA coating maintained the high bioactivity of BVLD and effectively reduced the thrombosis formation by inhibition of the adhesion and denaturation of fibrinogen, platelets, and other blood components. Both in vitro and ex vivo blood evaluation results demonstrated that this coating significantly improved the hemocompatibility. These results confirmed the capability of PDA fitted TiO2 nanotube systems to be applied for local drug delivery over an extended period with well retained bioactivity and predictable release kinetics.
Collapse
Affiliation(s)
- Ying Yang
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Xiangyang Li
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Hua Qiu
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Ping Li
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Pengkai Qi
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Manfred F Maitz
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
- Max Bergmann Center of Biomaterials , Leibniz Institute of Polymer Research Dresden , Hohe Strasse 6 , 01069 Dresden , Germany
| | - Tianxue You
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Ru Shen
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Zhilu Yang
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Wenjie Tian
- Sichuan Provincial People's Hospital , Cardiology , Chengdu , Sichuan 610072 , China
| | - Nan Huang
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| |
Collapse
|
20
|
Le PN, Huynh CK, Tran NQ. Advances in thermosensitive polymer-grafted platforms for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1016-1030. [PMID: 30184725 DOI: 10.1016/j.msec.2018.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/16/2017] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
Studies on "smart" polymeric material performing environmental stimuli such as temperature, pH, magnetic field, enzyme and photo-sensation have recently paid much attention to practical applications. Among of them, thermo-responsive grafted copolymers, amphiphilic steroids as well as polyester molecules have been utilized in the fabrication of several multifunctional platforms. Indeed, they performed a strikingly functional improvement comparing to some original materials and exhibited a holistic approach for biomedical applications. In case of drug delivery systems (DDS), there has been some successful proof of thermal-responsive grafted platforms on clinical trials such as ThermoDox®, BIND-014, Cynviloq IG-001, Genexol-PM, etc. This review would detail the recent progress and highlights of some temperature-responsive polymer-grafted nanomaterials or hydrogels in the 'smart' DDS that covered from synthetic polymers to nature-driven biomaterials and novel generations of some amphiphilic functional platforms. These approaches could produce several types of smart biomaterials for human health care in future.
Collapse
Affiliation(s)
- Phung Ngan Le
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam
| | - Chan Khon Huynh
- Biomedical Engineering Department, International University, National Universities in HCMC, HCMC 70000, Viet Nam
| | - Ngoc Quyen Tran
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam; Graduate School of Science and Technology Viet Nam, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam.
| |
Collapse
|
21
|
Synthesis of Aloevera/Acrylonitrile based Nanoparticles for targeted drug delivery of 5-Aminosalicylic acid. Int J Biol Macromol 2018; 106:930-939. [DOI: 10.1016/j.ijbiomac.2017.08.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 11/22/2022]
|
22
|
Li X, Liu Y, Sun Y. Alginate-grafted Sepharose FF: A novel polymeric ligand-based cation exchanger for high-capacity protein chromatography. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Lian H, Du Y, Chen X, Duan L, Gao G, Xiao C, Zhuang X. Core cross-linked poly(ethylene glycol)-graft-Dextran nanoparticles for reduction and pH dual responsive intracellular drug delivery. J Colloid Interface Sci 2017; 496:201-210. [DOI: 10.1016/j.jcis.2017.02.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 11/26/2022]
|
24
|
Boussahel A, Ibegbu DM, Lamtahri R, Maucotel J, Chuquet J, Lefranc B, Leprince J, Roldo M, Mével JCL, Gorecki D, Barbu E. Investigations of octylglyceryl dextran-graft-poly(lactic acid) nanoparticles for peptide delivery to the brain. Nanomedicine (Lond) 2017; 12:879-892. [DOI: 10.2217/nnm-2016-0406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Develop modified dextran nanoparticles showing potential to assist with drug permeation across the blood–brain barrier for the delivery of neuropeptides. Methods: Nanoparticles loaded by emulsification with model macromolecular actives were characterized in terms of stability, cytotoxicity and drug-release behavior. Peptide-loaded nanoformulations were tested in an in vivo trout model and in food-deprived mice. Results: Nanoformulations loaded with model peptides showed good stability and appeared nontoxic in low concentration against human brain endothelial cells. They were found to preserve the bioactivity of loaded peptides (angiotensin II) as demonstrated in vivo using a trout model, and to induce a transient reduction of food consumption in mice when loaded with an anorexigenic octaneuropeptide. Conclusion: Octylglyceryl dextran-graft-poly(lactic acid) nanoparticles formulated by emulsification demonstrate potential for peptide delivery.
Collapse
Affiliation(s)
- Asme Boussahel
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT, UK
| | - Daniel M Ibegbu
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT, UK
| | - Rhita Lamtahri
- Laboratory of Neuronal & Neuroendocrine Differentiation & Communication, INSERM U1239, Normandy University, 76000 Rouen, France
| | - Julie Maucotel
- Laboratory of Neuronal & Neuroendocrine Differentiation & Communication, INSERM U1239, Normandy University, 76000 Rouen, France
| | - Julien Chuquet
- Laboratory of Neuronal & Neuroendocrine Differentiation & Communication, INSERM U1239, Normandy University, 76000 Rouen, France
| | - Benjamin Lefranc
- Laboratory of Neuronal & Neuroendocrine Differentiation & Communication, INSERM U1239, Normandy University, 76000 Rouen, France
| | - Jérôme Leprince
- Laboratory of Neuronal & Neuroendocrine Differentiation & Communication, INSERM U1239, Normandy University, 76000 Rouen, France
| | - Marta Roldo
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT, UK
| | - Jean-Claude Le Mével
- Neurophysiology Laboratory, LaTIM UMR 1101, University of Brest, 29238 Cedex 3, France
| | - Darek Gorecki
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT, UK
| | - Eugen Barbu
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT, UK
| |
Collapse
|
25
|
Bai G, Wu H, Lou P, Wang Y, Nichifor M, Zhuo K, Wang J, Bastos M. Cationic gemini surfactant as a dual linker for a cholic acid-modified polysaccharide in aqueous solution: thermodynamics of interaction and phase behavior. Phys Chem Chem Phys 2017; 19:1590-1600. [PMID: 27990515 DOI: 10.1039/c6cp07212g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the thermodynamics of formation of biocompatible aggregates is a key factor in the bottom up approach to the development of novel types of drug carriers and their structural tuning using small amphiphilic molecules. We chose an anionic amphiphilic and biocompatible polymer that consists of a dextran and grafted cholic acid pendants, randomly distributed along the dextran backbone, with a degree of substitution (DS) of 15 mol% (designated Dex-15CACOONa). The thermodynamics of interaction and phase behavior of mixtures of this polyelectrolyte and a cationic gemini surfactant hexanediyl-α,ω-bis(dodecyldimethylammonium bromide) (C12C6C12Br2) or its monomer surfactant dodecyltrimethylammonium bromide (DTAB) in aqueous solution were characterized by isothermal titration calorimetry (ITC) and turbidity, together with cryogenic transmission electron microscopy (Cryo-TEM). The various critical concentrations and the enthalpy changes of the corresponding phase transitions for the oppositely charged system were obtained from the plots of the observed enthalpy change (ΔHobs) and turbidity measurements as a function of gemini concentration. The morphologies of the aggregates in various phases were observed by Cryo-TEM. Altogether these results suggest the critical role of gemini as a dual linker. At the concentrations where the crosslink between the pendant aggregates happens, the free gemini concentration is proximately zero and the aggregate retains its negative charge. The analysis of various factors involved in the interaction allowed a rationalization of the driving forces for mixed aggregate formation, which will contribute to a subsequent rational design of drug delivery systems based on this polymer/surfactant system.
Collapse
Affiliation(s)
- Guangyue Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Hui Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Pengxiao Lou
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Yujie Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China.
| | - Marieta Nichifor
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania.
| | - Kelei Zhuo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | - Margarida Bastos
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre, 687, P-4169-007 Porto, Portugal.
| |
Collapse
|
26
|
Sun HJ, Wang Y, Hao T, Wang CY, Wang QY, Jiang XX. Efficient GSH delivery using PAMAM-GSH into MPP-induced PC12 cellular model for Parkinson's disease. Regen Biomater 2016; 3:299-307. [PMID: 27699060 PMCID: PMC5043156 DOI: 10.1093/rb/rbw032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 12/11/2022] Open
Abstract
Glutathione (GSH) depletion has been an important contributor to the dysfunction of dopamine neurons. Polyamidoamine-GSH (PAMAM-GSH) was synthesized and the delivery effect of GSH into PC12 cells was tested. MTT assessment for cytotoxicity and reactive oxygen species (ROS) as well as nitrite oxide (NO) and intracelluar superoxide dismutase (SOD) detection for antioxidative ability were performed. Furthermore, the antiapoptotic ability was analysed by assessing caspase-3, JNK1/2 and Erk1/2 expression. Our data indicated that PAMAM-GSH is an effective agent to replenish GSH into PC12 cells. PAMAM-GSH developed its antioxidative and protective ability for 1-methyl-4-phenylpyridinium (MPP)-induced PC12 cells by reducing the intracellular levels of ROS and SOD activity as well as decreasing the release of NO. Meanwhile, PAMAM-GSH could inhibit caspase-3 activation and might show its antiapoptotic ability to MPP-induced PC12 cells through JNK2/Erk1/2 pathway. In summary, these studies suggest that PAMAM-GSH conjugate has an intrinsic ability to penetrate PC12 cells and deliver GSH into these cells which may provide a new strategy for clinical applications in the treatment of Parkinson’s disease.
Collapse
Affiliation(s)
- Hong-Ji Sun
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China
| | - Yan Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China
| | - Tong Hao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China
| | - Chang-Yong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China
| | - Qi-Yu Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China
| | - Xiao-Xia Jiang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China
| |
Collapse
|
27
|
Chen L, Liu X, Wong KH. Novel nanoparticle materials for drug/food delivery-polysaccharides. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Rosière R, Van Woensel M, Mathieu V, Langer I, Mathivet T, Vermeersch M, Amighi K, Wauthoz N. Development and evaluation of well-tolerated and tumor-penetrating polymeric micelle-based dry powders for inhaled anti-cancer chemotherapy. Int J Pharm 2016; 501:148-59. [PMID: 26850313 DOI: 10.1016/j.ijpharm.2016.01.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/20/2022]
Abstract
Despite the direct access to the lung offered by the inhalation route, drug penetration into lung tumors could remain an important issue. In this study, folate-polyethylene glycol-hydrophobically-modified dextran (F-PEG-HMD) micelles were developed as an effective pulmonary drug delivery system to reach and penetrate lung tumors and cancer cells. The F-PEG-HMD micelles were able to enter HeLa and M109-HiFR, two folate receptor-expressing cancer cell lines, in vitro, and in vivo after administration by inhalation to orthotopic M109-HiFR lung tumor grafted mice. Paclitaxel-loaded F-PEG-HMD micelles characterized in PBS by a Z-average diameter of ∼50 nm and a zeta potential of ∼-4 mV were prepared with an encapsulation efficiency of ∼100%. The loaded micelles reduced HeLa and M109-HiFR cell growth, with half maximal inhibitory concentrations of 37 and 150 nM, respectively. Dry powders embedding the paclitaxel-loaded F-PEG-HMD micelles were developed by spray-drying. In vitro, good deposition profiles were obtained, with a fine particle fraction of up to 50% and good ability to re-disperse the micelles in physiological buffer. A polymeric micelle-based dry powder without paclitaxel was well-tolerated in vivo, as assessed in healthy mice by determination of total protein content, cell count, and cytokine IL-1β, IL-6, and TNF-α concentrations in bronchoalveolar lavage fluids.
Collapse
Affiliation(s)
- Rémi Rosière
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Faculté de Pharmacie Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Matthias Van Woensel
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Faculté de Pharmacie Université libre de Bruxelles (ULB), Brussels, Belgium; Research Group Experimental Neurosurgery and Neuroanatomy, Laboratory of Pediatric Immunology, KULeuven, Leuven, Belgium
| | - Véronique Mathieu
- Laboratoire de Cancérologie et Toxicologie Expérimentale, Faculté de Pharmacie, ULB, Brussels, Belgium
| | - Ingrid Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), ULB, Brussels, Belgium
| | | | | | - Karim Amighi
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Faculté de Pharmacie Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathalie Wauthoz
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Faculté de Pharmacie Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
29
|
Luque-Alcaraz AG, Lizardi-Mendoza J, Goycoolea FM, Higuera-Ciapara I, Argüelles-Monal W. Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier. RSC Adv 2016. [DOI: 10.1039/c6ra06563e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study was aimed to understand the physical processes underlying nanoprecipitation of chitosan, their influence on the characteristics of nanoparticles and to assess their capacity as drug nanocarrier.
Collapse
Affiliation(s)
- A. G. Luque-Alcaraz
- Centro de Investigación en Alimentación y Desarrollo AC
- Coordinación Guaymas
- Guaymas
- Mexico
| | - J. Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo AC
- Coordinación Hermosillo
- Hermosillo
- Mexico
| | - F. M. Goycoolea
- Institut für Biologie und Biotechnologie der Pflanzen
- Westfälische Wilhelms Universtät – Münster
- Münster
- Germany
| | - I. Higuera-Ciapara
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco
- Guadalajara
- Mexico
| | - W. Argüelles-Monal
- Centro de Investigación en Alimentación y Desarrollo AC
- Coordinación Guaymas
- Guaymas
- Mexico
| |
Collapse
|
30
|
Yu J, Zhou Y, Chen W, Ren J, Zhang L, Lu L, Luo G, Huang H. Preparation, Characterization and Evaluation of α-Tocopherol Succinate-Modified Dextran Micelles as Potential Drug Carriers. MATERIALS (BASEL, SWITZERLAND) 2015; 8:6685-6696. [PMID: 28793593 PMCID: PMC5455401 DOI: 10.3390/ma8105332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 02/07/2023]
Abstract
In the present study, α-tocopherol succinate (TOS) conjugated dextran (Dex-TOS) was synthesized and characterized by fourier transform infrared (FT-IR) spectroscopy, ¹H nuclear magnetic resonance (¹H NMR), dynamic light scattering (DLS) and fluorescence spectroscopy. Dex-TOS could form nanoscaled micelles in aqueous medium. The critical micelle concentration (CMC) is 0.0034 mg/mL. Doxorubicin (Dox) was selected as a model drug. Dox-loaded Dex-TOS (Dex-TOS/Dox) micelles were prepared by a dialysis method. The size of Dex-TOS/Dox micelles increased from 295 to 325 nm with the Dox-loading content increasing from 4.21% to 8.12%. The Dex-TOS/Dox micelles were almost spherical in shape, as determined by transmission electron microscopy (TEM). In vitro release demonstrated that Dox release from the micelles was in a sustained manner for up to 96 h. The cellular uptake of Dex-TOS/Dox micelles in human nasopharyngeal epidermoid carcinoma (KB) cells is an endocytic process determined by confocal laser scanning microscopy (CLSM). Moreover, Dex-TOS/Dox micelles exhibited comparable cytotoxicity in contrast with doxorubicin hydrochloride. These results suggested that Dex-TOS micelles could be a promising carrier for drug delivery.
Collapse
Affiliation(s)
- Jingmou Yu
- School of Pharmacy and Life Sciences, Jiujiang University, 320 Xunyang East Road, Jiujiang 332000, China.
| | - Yufeng Zhou
- School of Pharmacy and Life Sciences, Jiujiang University, 320 Xunyang East Road, Jiujiang 332000, China.
- School of Chemical and Biological Engneering, Yichun University, 576 Xuefu Road, Yichun 336000, China.
| | - Wencong Chen
- School of Pharmacy and Life Sciences, Jiujiang University, 320 Xunyang East Road, Jiujiang 332000, China.
| | - Jin Ren
- School of Pharmacy and Life Sciences, Jiujiang University, 320 Xunyang East Road, Jiujiang 332000, China.
| | - Lifang Zhang
- School of Pharmacy and Life Sciences, Jiujiang University, 320 Xunyang East Road, Jiujiang 332000, China.
| | - Lu Lu
- School of Pharmacy and Life Sciences, Jiujiang University, 320 Xunyang East Road, Jiujiang 332000, China.
| | - Gan Luo
- School of Pharmacy and Life Sciences, Jiujiang University, 320 Xunyang East Road, Jiujiang 332000, China.
| | - Hao Huang
- School of Chemical and Biological Engneering, Yichun University, 576 Xuefu Road, Yichun 336000, China.
| |
Collapse
|
31
|
Namazi H, Belali S. Starch-g-lactic acid/montmorillonite nanocomposite: Synthesis, characterization and controlled drug release study. STARCH-STARKE 2015. [DOI: 10.1002/star.201400226] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hassan Namazi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry; University of Tabriz; Tabriz EA Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN); Tabriz University of Medical Science; Tabriz Iran
| | - Simin Belali
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry; University of Tabriz; Tabriz EA Iran
| |
Collapse
|
32
|
Wang J, Wang J. Molecular weight characterization of high molecular weight dextran with multiangle light scattering in on-line and off-line mode. Biopolymers 2015; 103:387-92. [PMID: 25808515 DOI: 10.1002/bip.22637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/12/2015] [Accepted: 02/26/2015] [Indexed: 11/05/2022]
Abstract
This work reports the molecular weight (MW) analysis of high MW dextran using multiangle light scattering (MALS) in both chromatography and automated batch measurement mode. The results show that the chromatographic columns alter the high MW native dextran and cause underestimation of the MW as a consequence. Alternatively, a batch MALS measurement (without columns) provides more accurate MW values. The batch MALS measurement was automated with the incorporation of an automatic sample dilution and injection device. This automation reduces the sample preparation time and minimizes concentration errors introduced by manual sample dilution. To the best of our knowledge, this is the first study using an automated batch MALS in the analysis of high MW dextran.
Collapse
|
33
|
Self-assembled nanoparticles of acetylated cashew gum: Characterization and evaluation as potential drug carrier. Carbohydr Polym 2015; 117:610-615. [DOI: 10.1016/j.carbpol.2014.09.087] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/22/2022]
|
34
|
Gu F, Li BZ, Xia H, Adhikari B, Gao Q. Preparation of starch nanospheres through hydrophobic modification followed by initial water dialysis. Carbohydr Polym 2015; 115:605-12. [DOI: 10.1016/j.carbpol.2014.08.102] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
|
35
|
Yuminoki K, Seko F, Horii S, Takeuchi H, Teramoto K, Nakada Y, Hashimoto N. Preparation and Evaluation of High Dispersion Stable Nanocrystal Formulation of Poorly Water‐Soluble Compounds by Using Povacoat. J Pharm Sci 2014; 103:3772-3781. [DOI: 10.1002/jps.24147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/07/2022]
|
36
|
Patel AR, Velikov KP. Zein as a source of functional colloidal nano- and microstructures. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.08.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
|
38
|
Kim H, Lee E, Lee IH, Lee J, Kim J, Kim S, Lee Y, Kim D, Choi M, Kim YC, Jon S. Preparation and therapeutic evaluation of paclitaxel-conjugated low-molecular-weight chitosan nanoparticles. Macromol Res 2014. [DOI: 10.1007/s13233-014-2118-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Rajh T, Dimitrijevic NM, Bissonnette M, Koritarov T, Konda V. Titanium Dioxide in the Service of the Biomedical Revolution. Chem Rev 2014; 114:10177-216. [DOI: 10.1021/cr500029g] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tijana Rajh
- Center
for Nanoscale Materials, Argonne National Laboratory, 9700 South
Cass Avenue, Argonne, Illinois 60540, United States
| | - Nada M. Dimitrijevic
- Center
for Nanoscale Materials, Argonne National Laboratory, 9700 South
Cass Avenue, Argonne, Illinois 60540, United States
| | - Marc Bissonnette
- Department
of Medicine, The University of Chicago Medicine, 5841 South Maryland Avenue, MC 4076, Chicago, Illinois 60637, United States
| | - Tamara Koritarov
- Center
for Nanoscale Materials, Argonne National Laboratory, 9700 South
Cass Avenue, Argonne, Illinois 60540, United States
- School
of Medicine, Boston University, 72 East Concord Street, Boston, Massachusetts 02118, United States
| | - Vani Konda
- Department
of Medicine, The University of Chicago Medicine, 5841 South Maryland Avenue, MC 4076, Chicago, Illinois 60637, United States
| |
Collapse
|
40
|
Beyki M, Zhaveh S, Khalili ST, Rahmani-Cherati T, Abollahi A, Bayat M, Tabatabaei M, Mohsenifar A. Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. INDUSTRIAL CROPS AND PRODUCTS 2014. [PMID: 0 DOI: 10.1016/j.indcrop.2014.01.033] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
41
|
Kaneo Y, Taguchi K, Tanaka T, Yamamoto S. Nanoparticles of hydrophobized cluster dextrin as biodegradable drug carriers: solubilization and encapsulation of amphotericin B. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50072-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Glucosylated polymeric nanoparticles: A sweetened approach against blood compatibility paradox. Colloids Surf B Biointerfaces 2013; 108:337-44. [DOI: 10.1016/j.colsurfb.2013.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 02/22/2013] [Accepted: 03/01/2013] [Indexed: 11/19/2022]
|
43
|
Aschenbrenner E, Bley K, Koynov K, Makowski M, Kappl M, Landfester K, Weiss CK. Using the polymeric ouzo effect for the preparation of polysaccharide-based nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8845-8855. [PMID: 23777243 DOI: 10.1021/la4017867] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The polymeric ouzo effect, a nanoprecipitation process, is used for the preparation of polysaccharide-based nanoparticles. Dextran, pullulan, and starch were esterified with hydrophobic carboxylic acid anhydrides to obtain hydrophobic polysaccharides, which are insoluble in water. The additional introduction of methacroyl residues offers the possibility to cross-link the generated nanostructures, which become insoluble in organic solvents. To make use of the ouzo effect for the formation of nanoparticles, the polymer has to be soluble in an organic solvent, which is miscible with water. Here, acetone and THF were used. Immediately after the organic polymer solution is added to water, nanoparticles are generated. The size of the nanoparticles can be adjusted between 50 and 200 nm by changing the concentration of the initial polysaccharide solution. The degree of hydrophobic substitution was shown to have a very minor effect on the particle size. Dispersions with solids contents of up to 2% were obtained. Furthermore, the mechanical properties of the nanoparticles were investigated with force microscopy, and it was shown by fluorescence correlation spectroscopy that a fluorescent dye could be encapsulated in the nanoparticles by the applied nanoprecipitation procedure.
Collapse
|
44
|
Nguyen HX, O'Rear EA. Biphasic release of protein from polyethylene glycol and polyethylene glycol/modified dextran microspheres. J Biomed Mater Res A 2013; 101:2699-705. [PMID: 23427111 DOI: 10.1002/jbm.a.34569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/25/2012] [Accepted: 12/11/2012] [Indexed: 01/21/2023]
Abstract
Dextrans show great promise for delivery of therapeutic agents. Dextran acetates (DAs) were synthesized with increasing degrees of substitution (DA1 < DA2 < DA3) by the reaction of the polysaccharide dextran (70 kDa) with acetic anhydride. A series of polyethylene glycol (PEG)/DA microspheres were prepared and tested with bovine serum albumin (BSA) functioning as a model protein. Particle size (0.74-0.85 μm) and encapsulation efficiency (56-70%) increased with the degree of substitution along with a slower release rate of protein from PEG/DA microspheres. Time to release 90% of protein rose from 31 to 118 min. Percentage of BSA released from PEG and PEG/DA3 microspheres with time (min) was modeled mathematically [Y(PEG) = 100(1 - e(-0.12t)); Y(PEG/DA3) = 100(1 - e(-0.024t))] to predict cumulative delivery from mixtures in vitro over a period of hours when constrained to a target level at 30 min. The system is examined for potential application in thrombolytic therapy.
Collapse
Affiliation(s)
- Hoai X Nguyen
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | |
Collapse
|
45
|
Tay SH, Pang SC, Chin SF. A facile approach for controlled synthesis of hydrophilic starch-based nanoparticles from native sago starch. STARCH-STARKE 2012. [DOI: 10.1002/star.201200056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Recent advances in the treatment of neurodegenerative diseases based on GSH delivery systems. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:240146. [PMID: 22701755 PMCID: PMC3372378 DOI: 10.1155/2012/240146] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/22/2012] [Indexed: 11/18/2022]
Abstract
Neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease(AD), are a group of pathologies characterized by a progressive and specific loss of certain brain cell populations. Oxidative stress, mitochondrial dysfunction, and apoptosis play interrelated roles in these disorders. It is well documented that free radical oxidative damage, particularly on neuronal lipids, proteins, DNA, and RNA, is extensive in PD and AD brains. Moreover, alterations of glutathione (GSH) metabolism in brain have been implicated in oxidative stress and neurodegenerative diseases. As a consequence, the reduced GSH levels observed in these pathologies have stimulated a number of researchers to find new potential approaches for maintaining or restoring GSH levels. Unfortunately, GSH delivery to the central nervous system (CNS) is limited due to a poor stability and low bioavailability. Medicinal-chemistry- and technology-based approaches are commonly used to improve physicochemical, biopharmaceutical, and drug delivery properties of therapeutic agents. This paper will focus primarily on these approaches used in order to replenish intracellular GSH levels, which are reduced in neurodegenerative diseases. Here, we discuss the beneficial properties of these approaches and their potential implications for the future treatment of patients suffering from neurodegenerative diseases, and more specifically from PD and AD.
Collapse
|
47
|
Kaewprapan K, Inprakhon P, Marie E, Durand A. Enzymatically degradable nanoparticles of dextran esters as potential drug delivery systems. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2012.01.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Tahir MN, Lämmerhardt N, Mischnick P. Introduction of various functionalities into polysaccharides using alkynyl ethers as precursors: Pentynyl dextrans. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.11.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Kaewprapan K, Baros F, Marie E, Inprakhon P, Durand A. Macromolecular surfactants synthesized by lipase-catalyzed transesterification of dextran with vinyl decanoate. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
50
|
Long LX, Yuan XB, Chang J, Zhang ZH, Gu MQ, Song TT, Xing Y, Yuan XY, Jiang SC, Sheng J. Self-assembly of polylactic acid and cholesterol-modified dextran into hollow nanocapsules. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.11.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|