1
|
Matinfar M, Nychka JA. Process Mapping of the Sol-Gel Transition in Acid-Initiated Sodium Silicate Solutions. Gels 2024; 10:673. [PMID: 39451326 PMCID: PMC11507553 DOI: 10.3390/gels10100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Fabricating large-scale porous bioactive glass bone scaffolds presents significant challenges. This study aims to develop formable, in situ setting scaffolds with a practical gelation time of about 10 min by mixing 45S5 bioactive glass with sodium silicate (waterglass) and an acid initiator. The effects of pH (2-11), waterglass concentration (15-50 wt.%), and acid initiator type (phosphoric or boric acid) were examined to optimize gelation kinetics and microstructure. A 10 min gelation time was achieved with boric acid and phosphoric acid at various pH levels by adjusting the waterglass concentration. Exponential and polynomial models were proposed to predict gelation times in basic and acidic environments, respectively. The optical properties of the gels were studied qualitatively and quantitatively, providing insights into gelation kinetics and structure. Acidic gels formed smaller particles in a dense network (pores < 550 nm) with higher light transmittance, while basic gels had larger aggregates (pores ~5 µm) and lower transmittance. As the waterglass concentration decreased, pore size and transmittance converged in both groups. The onset of gelation was detected around 8 min using the derivative of light transmittance. This work identifies the key factors controlling waterglass gelation and their impact on gel structure, enabling the tailored creation of formable, in situ setting bioactive glass bone scaffolds.
Collapse
Affiliation(s)
- Marzieh Matinfar
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - John A Nychka
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
2
|
Rajan RK, Chandran S, John A, Parameswaran R. Nanofibrous polycaprolactone-polyethylene glycol-based scaffolds embedded with pamidronate: fabrication and characterization. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2124252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Remya K. Rajan
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Sunitha Chandran
- TIMED, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Annie John
- Department of Biochemistry, University of Kerala, Trivandrum, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
3
|
The Effects of Polyphenol, Tannic Acid, or Tannic Acid in Combination with Pamidronate on Human Osteoblast Cell Line Metabolism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020451. [PMID: 35056766 PMCID: PMC8779126 DOI: 10.3390/molecules27020451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/04/2023]
Abstract
Background: This study investigates the effect of tannic acid (TA) combined with pamidronate (PAM) on a human osteoblast cell line. Methods: EC50 for TA, PAM, and different combination ratios of TA and PAM (25:75, 50:50, 75:25) were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The combination index value was utilized to analyze the degree of drug interaction, while trypan blue assay was applied to analyze the cells proliferation effect. The mineralization and detection of bone BSP and Osx genes were determined via histochemical staining and PCR test, respectively. Results: The EC50 of osteoblasts treated with TA and a 75:25 ratio of TA and PAM were more potent with lower EC50 at 0.56 µg/mL and 0.48 µg/mL, respectively. The combination of TA and PAM (75:25) was shown to have synergistic interaction. On Day 7, both TA and PAM groups showed significantly increased proliferation compared with control and combination groups. On Day 7, both the TA and combination-treated groups demonstrated a higher production of calcium deposits than the control and PAM-treated groups. Moreover, on Day 7, the combination-treated group showed a significantly higher expression of BSP and Osx genes than both the TA and PAM groups. Conclusion: Combination treatment of TA and PAM at 75:25 ameliorated the highest enhancement of osteoblast proliferation and mineralization as well as caused a high expression of BSP and Osx genes.
Collapse
|
4
|
Marofi F, Choupani J, Solali S, Vahedi G, Hassanzadeh A, Gharibi T, Hagh MF. ATF4, DLX3, FRA1, MSX2, C/EBP-ζ, and C/EBP-α Shape the Molecular Basis of Therapeutic Effects of Zoledronic Acid in Bone Disorders. Anticancer Agents Med Chem 2021; 20:2274-2284. [PMID: 32698734 DOI: 10.2174/1871520620666200721101904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Zoledronic Acid (ZA) is one of the common treatment choices used in various boneassociated conditions. Also, many studies have investigated the effect of ZA on Osteoblastic-Differentiation (OSD) of Mesenchymal Stem Cells (MSCs), but its clear molecular mechanism(s) has remained to be understood. It seems that the methylation of the promoter region of key genes might be an important factor involved in the regulation of genes responsible for OSD. The present study aimed to evaluate the changes in the mRNA expression and promoter methylation of central Transcription Factors (TFs) during OSD of MSCs under treatment with ZA. MATERIALS AND METHODS MSCs were induced to be differentiated into the osteoblastic cell lineage using routine protocols. MSCs received ZA during OSD and then the methylation and mRNA expression levels of target genes were measured by Methylation Specific-quantitative Polymerase Chain Reaction (MS-qPCR) and real-time PCR, respectively. The osteoblastic differentiation was confirmed by Alizarin Red Staining and the related markers to this stage. RESULTS Gene expression and promoter methylation level for DLX3, FRA1, ATF4, MSX2, C/EBPζ, and C/EBPa were up or down-regulated in both ZA-treated and untreated cells during the osteodifferentiation process on days 0 to 21. ATF4, DLX3, and FRA1 genes were significantly up-regulated during the OSD processes, while the result for MSX2, C/EBPζ, and C/EBPa was reverse. On the other hand, ATF4 and DLX3 methylation levels gradually reduced in both ZA-treated and untreated cells during the osteodifferentiation process on days 0 to 21, while the pattern was increasing for MSX2 and C/EBPa. The methylation pattern of C/EBPζ was upward in untreated groups while it had a downward pattern in ZA-treated groups at the same scheduled time. The result for FRA1 was not significant in both groups at the same scheduled time (days 0-21). CONCLUSION The results indicated that promoter-hypomethylation of ATF4, DLX3, and FRA1 genes might be one of the mechanism(s) controlling their gene expression. Moreover, we found that promoter-hypermethylation led to the down-regulation of MSX2, C/EBP-ζ and C/EBP-α. The results implicate that ATF4, DLX3 and FRA1 may act as inducers of OSD while MSX2, C/EBP-ζ and C/EBP-α could act as the inhibitor ones. We also determined that promoter-methylation is an important process in the regulation of OSD. However, yet there was no significant difference in the promoter-methylation level of selected TFs in ZA-treated and control cells, a methylation- independent pathway might be involved in the regulation of target genes during OSD of MSCs.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Choupani
- Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Vahedi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid F Hagh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Ryu JH, Kang TY, Shin H, Kim KM, Hong MH, Kwon JS. Osteogenic Properties of Novel Methylsulfonylmethane-Coated Hydroxyapatite Scaffold. Int J Mol Sci 2020; 21:ijms21228501. [PMID: 33198074 PMCID: PMC7696815 DOI: 10.3390/ijms21228501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/04/2022] Open
Abstract
Despite numerous advantages of using porous hydroxyapatite (HAp) scaffolds in bone regeneration, the material is limited in terms of osteoinduction. In this study, the porous scaffold made from nanosized HAp was coated with different concentrations of osteoinductive aqueous methylsulfonylmethane (MSM) solution (2.5, 5, 10, and 20%) and the corresponding MH scaffolds were referred to as MH2.5, MH5, MH10, and MH20, respectively. The results showed that all MH scaffolds resulted in burst release of MSM for up to 7 d. Cellular experiments were conducted using MC3T3-E1 preosteoblast cells, which showed no significant difference between the MH2.5 scaffold and the control with respect to the rate of cell proliferation (p > 0.05). There was no significant difference between each group at day 4 for alkaline phosphatase (ALP) activity, though the MH2.5 group showed higher level of activity than other groups at day 10. Calcium deposition, using alizarin red staining, showed that cell mineralization was significantly higher in the MH2.5 scaffold than that in the HAp scaffold (p < 0.0001). This study indicated that the MH2.5 scaffold has potential for both osteoinduction and osteoconduction in bone regeneration.
Collapse
Affiliation(s)
- Jeong-Hyun Ryu
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
| | - Tae-Yun Kang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Hyunjung Shin
- Nature Inspired Materials Processing Research Center, Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea;
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Min-Ho Hong
- Nature Inspired Materials Processing Research Center, Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (M.-H.H.); (J.-S.K.); Tel.: +82-31-299-4266 (M.-H.H.); +82-2-2228-8301 (J.-S.K.)
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Correspondence: (M.-H.H.); (J.-S.K.); Tel.: +82-31-299-4266 (M.-H.H.); +82-2-2228-8301 (J.-S.K.)
| |
Collapse
|
6
|
Koyama C, Hirota M, Okamoto Y, Iwai T, Ogawa T, Hayakawa T, Mitsudo K. A nitrogen-containing bisphosphonate inhibits osteoblast attachment and impairs bone healing in bone-compatible scaffold. J Mech Behav Biomed Mater 2020; 104:103635. [PMID: 32174393 DOI: 10.1016/j.jmbbm.2020.103635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Compromised osteoblast attachment on hydroxyapatite could be involved in the development of bone healing failure. We developed a bone-compatible scaffold that mimics bone structure with sub-micron hydroxyapatite (HA) surfaces, so that we could evaluate the effects of nitrogen-containing bisphosphonate (N-BP) on osteoblast behavior and bone healing. Human osteoblasts were seeded onto the bone-compatible scaffold with or without N-BP, and cell attachment and spreading behavior were evaluated 4 and 24 h after seeding. Then, mineralization was evaluated at 7 and 14 days. The osteoconductive activity of the scaffold was evaluated by implantation for 3 and 6 weeks into a rat cranial bone defect. The numbers of osteoblasts and their diameters were significantly less in N-BP-binding scaffolds than in untreated scaffolds at 4 and 24 h. Mineralization were also significantly less in the N-BP-binding scaffolds than in controls at 7 and 14 days. In vivo study revealed bone formation in N-BP-binding scaffolds was significantly less than in untreated scaffolds at 3 and 6 weeks. These results suggest that N-BP-binding to HA inhibited osteoblast attachment and spreading, thereby compromising bone healing process in the injured bone defect site.
Collapse
Affiliation(s)
- Chika Koyama
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Makoto Hirota
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Yoshiyuki Okamoto
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Toshinori Iwai
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takahiro Ogawa
- Laboratory for Bone and Implant Sciences, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, 10833 Le Conte Avenue, Box 951668, Los Angeles, CA, 90095-1668, USA
| | - Tohru Hayakawa
- Department of Dental Engineering, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| |
Collapse
|
7
|
Hapidin H, Romli NAA, Abdullah H. Proliferation study and microscopy evaluation on the effects of tannic acid in human fetal osteoblast cell line (hFOB 1.19). Microsc Res Tech 2019; 82:1928-1940. [PMID: 31423711 DOI: 10.1002/jemt.23361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/03/2019] [Accepted: 07/29/2019] [Indexed: 11/06/2022]
Abstract
Tannic acid (TA) is a phenolic compound that might act directly on osteoblast metabolism. The study was performed to investigate the effects of TA on the proliferation, mineralization, and morphology of human fetal osteoblast cells (hFOB 1.19). The cells were divided into TA-treated, untreated, and pamidronate-treated (control drug) groups. Half maximal effective concentration (EC50 ) values for TA and pamidronate were measured using MTT assay. The EC50 of hFOB 1.19 cells treated with TA was 2.94 M. This concentration was more effective compared to the pamidronate (15.27 M). Cell proliferation assay was performed to compare cell viability from Day 1 until Day 14. The morphology of hFOB 1.19 was observed via inverted microscope and scanning electron microscope. Calcium (Ca) and phosphate (P) were assessed using energy-dispersive X-ray (EDX) analysis. Furthermore, the mineralization of hFOB 1.19 was determined by von Kossa staining (P depositions) and Alizarin Red S staining (Ca depositions). The number of cells treated with TA was significantly higher than the two control groups at Day 10 and Day 14. The morphology of cells treated with TA was uniformly fusiform-shaped with filopodia extensions. Besides, globular-like structures of deposited minerals were observed in the TA-treated group. In line with other findings, EDX spectrum analysis confirmed the presence of Ca and P. The cells treated with TA had significantly higher percentage of both minerals at Day 3 and Day 10 compared to the two control groups. In conclusion, TA enhances cell proliferation and causes cell morphology changes, as well as improved mineralization.
Collapse
Affiliation(s)
- Hermizi Hapidin
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nur Afiqah Amalina Romli
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Hasmah Abdullah
- Environmental and Occupational Health Program, School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
8
|
Remya KR, Chandran S, John A, Ramesh P. Pamidronate-encapsulated electrospun polycaprolactone as a potential bone regenerative scaffold. J BIOACT COMPAT POL 2019. [DOI: 10.1177/0883911519835142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study explores the potential of electrospun polycaprolactone scaffolds for the controlled delivery of pamidronate disodium pentahydrate, an amino-bisphosphonate drug used for the treatment of osteoporosis. Major drawbacks associated with oral bisphosphonate therapy are its poor bioavailability and gastrointestinal side-effects. Herein, we used polycaprolactone, a well-known Food and Drug Administration–approved biomaterial, as the delivering vehicle for pamidronate disodium pentahydrate. Scaffolds based on polycaprolactone with three different formulations (1, 3, and 5 wt%) of pamidronate disodium pentahydrate were fabricated by electrospinning, and a comparative study was carried out to evaluate the effect of pamidronate disodium pentahydrate on physico-mechanical and biological properties of polycaprolactone. The observations from Fourier-transform infrared spectra and thermogravimetric analysis confirmed the successful incorporation of pamidronate disodium pentahydrate into polycaprolactone scaffolds. The study also revealed that pamidronate disodium pentahydrate–loaded scaffolds exhibited improved hydrophilicity as well as superior mechanical properties as depicted by the contact angle measurements and mechanical property evaluation. In vitro drug release studies of pamidronate disodium pentahydrate–loaded scaffolds in phosphate buffer saline at 37°C showed that all the scaffolds exhibited controlled release of pamidronate disodium pentahydrate. In vitro degradation studies further revealed that pamidronate disodium pentahydrate incorporated polycaprolactone scaffolds degraded faster as depicted by the fiber rupture and drop in mechanical properties. In vitro cell culture studies using human osteosarcoma cell lines demonstrated that pamidronate disodium pentahydrate–loaded polycaprolactone scaffolds were cytocompatible. The human osteosarcoma cells had favorable interaction with the scaffolds, and the viability of adhered cells was depicted by the fluorescein diacetate/propidium iodide staining. MTT assay further revealed enhanced cell viability on PCL/PDS3 scaffolds. Our findings bespeak that the pamidronate disodium pentahydrate–encapsulated electrospun polycaprolactone scaffolds have the potential to serve as a promising drug delivery vehicle for osteoporotic bone defect repair.
Collapse
Affiliation(s)
- KR Remya
- Division of Polymeric Medical Devices, Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology–Trivandrum, Trivandrum, India
| | - Sunitha Chandran
- Department of Microbiology and Immunology, Louisiana State University Shreveport, Shreveport, LA, USA
| | - Annie John
- Department of Biochemistry, University of Kerala, Trivandrum, India
| | - P Ramesh
- Division of Polymeric Medical Devices, Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology–Trivandrum, Trivandrum, India
| |
Collapse
|
9
|
Abdullah AR, Hapidin H, Abdullah H. The Role of Semipurified Fractions Isolated from Quercus infectoria on Bone Metabolism by Using hFOB 1.19 Human Fetal Osteoblast Cell Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:5319528. [PMID: 29861772 PMCID: PMC5971332 DOI: 10.1155/2018/5319528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/27/2018] [Accepted: 03/18/2018] [Indexed: 01/03/2023]
Abstract
Background. Quercus infectoria (QI) is a plant used in traditional medicines in Asia. The plant was reported to contain various active phytochemical compounds that have potential to stimulate bone formation. However, the precise mechanism of the stimulation effect of QI on osteoblast has not been elucidated. The present study was carried out to isolate QI semipurified fractions from aqueous QI extract and to delineate the molecular mechanism of QI semipurified fraction that enhanced bone formation by using hFOB1.19 human fetal osteoblast cell model. Methods. Isolation of QI semipurified fractions was established by means of column chromatography and thin layer chromatography. Established QI semipurified fractions were identified using Liquid Chromatography-Mass Spectrometry (LC-MS). Cells were treated with derived QI semipurified fractions and investigated for mineralization deposition and protein expression level of BMP-2, Runx2, and OPN by ELISA followed gene expression analysis of BMP-2 and Runx2 by RT-PCR. Results. Column chromatography isolation and purification yield Fractions A, B, and C. LC-MS analysis reveals the presence of polyphenols in each fraction. Results show that QI semipurified fractions increased the activity and upregulated the gene expression of BMP-2 and Runx2 at day 1, day 3, and day 7. OPN activity increased in cells treated with QI semipurified fractions at day 1 and day 3. Meanwhile, at day 7, expression of OPN decreased in activity. Furthermore, the study showed that combination of Fractions A, B, and C with osteoporotic drug (pamidronate) further increased the activity and upregulated the gene expression of BMP-2 and Runx2. Conclusions. These findings demonstrated that polyphenols from semipurified fractions of QI enhanced bone formation through expression of the investigated bone-related marker that is its potential role when combined with readily available osteoporotic drug.
Collapse
Affiliation(s)
- Amira Raudhah Abdullah
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hermizi Hapidin
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hasmah Abdullah
- Environmental and Occupational Health Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
10
|
Pei Y, Ye D, Zhao Q, Wang X, Zhang C, Huang W, Zhang N, Liu S, Zhang L. Effectively promoting wound healing with cellulose/gelatin sponges constructed directly from a cellulose solution. J Mater Chem B 2015; 3:7518-7528. [PMID: 32262635 DOI: 10.1039/c5tb00477b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cellulose sponges loading gelatin and bFGF as wound dressing were constructed directly from the cellulose solution via a green and cost-effective pathway, which effectively promoted wound healing.
Collapse
Affiliation(s)
- Ying Pei
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Dongdong Ye
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Qi Zhao
- Renmin Hospital
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Xueying Wang
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Chun Zhang
- Renmin Hospital
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Weihua Huang
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Nu Zhang
- Renmin Hospital
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Shiqing Liu
- Renmin Hospital
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Lina Zhang
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
11
|
Park SB, Park SH, Kang YK, Chung CK. The time-dependent effect of ibandronate on bone graft remodeling in an ovariectomized rat spinal arthrodesis model. Spine J 2014; 14:1748-57. [PMID: 24486470 DOI: 10.1016/j.spinee.2014.01.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 12/23/2013] [Accepted: 01/17/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT In osteoporotic patients undergoing spinal arthrodesis, the use of bisphosphonates (BPs) remains controversial with regard to bone fusion. There is no consensus about the appropriate time to give BPs to patients with osteoporosis undergoing spinal arthrodesis. PURPOSE We aimed to study the effect of BPs, given at different times, on the bone response to osteoporotic spinal arthrodesis. STUDY DESIGN/SETTING Radiological, histologic, and molecular assessments of bone formation after the different administration time of ibandronate in an ovariectomized (OVX) rat spinal fusion model. METHODS Female Sprague-Dawley rats (n=100) were OVX (n=80) or non-OVX operated (n=20) and randomized into five groups: non-OVX, osteoporosis, and osteoporosis with early, simultaneous, and late BP groups. Eight weeks after ovariectomy, lumbar spinal arthrodesis was performed using autologous tailbones. Animals were killed 4 and 8 weeks after arthrodesis, and bone formation was assessed by measuring bone mineral density (BMD), messenger RNA expression, manual palpation, radiological evaluation, and histomorphometry. RESULTS Compared with late administration, early administration of ibandronate increased femur BMD in OVX rats and did not hinder bone fusion. Radiological analysis showed that groups given early ibandronate had increased bone volume in the grafted site 8 weeks after surgery. Histomorphometric analysis showed that ibandronate positively affected endochondral and intramembranous ossification. In the OVX groups, ibandronate increased bone turnover to a level similar to that in the non-OVX group. These findings suggested that early administration of ibandronate did not inhibit osteogenesis, including endochondral and intramembranous ossification and fusion rate. CONCLUSIONS Our results suggest that the early administration of BPs may not hinder the bone fusion of osteoporotic patients undergoing spinal arthrodesis.
Collapse
Affiliation(s)
- Sung Bae Park
- Department of Neurosurgery, Seoul National University Boramae Medical Center, 5 Gil 20, Boramae-Road, Dongjak-Gu, Seoul, Korea
| | - Seong Hoon Park
- Department of Radiology and the Institute for Metalbolic Disease, Wonkwang University School of Medicine, Shinyong-Dong, Iksan, Jeonbuk, Korea
| | - Yun Kyung Kang
- Department of Pathology, Inje University College of Medicine, Seoul Paik Hospital, Seoul, Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University College of Medicine, Clinical Research Institute, Seoul National University Hospital, 28 Yeongeon-dong, Jongno-gu, Seoul 110-744, Korea.
| |
Collapse
|
12
|
Gou W, Wang X, Peng J, Lu Q, Wang Y, Wang A, Guo Q, Gao X, Xu W, Lu S. Controlled delivery of zoledronate improved bone formation locally in vivo. PLoS One 2014; 9:e91317. [PMID: 24618585 PMCID: PMC3950209 DOI: 10.1371/journal.pone.0091317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/10/2014] [Indexed: 12/18/2022] Open
Abstract
Bisphosphonates (BPs) have been widely used in clinical treatment of bone diseases with increased bone resorption because of their strong affinity for bone and their inhibition of bone resorption. Recently, there has been growing interest in their improvement of bone formation. However, the effect of local controlled delivery of BPs is unclear. We used polylactide acid-glycolic acid copolymer (PLGA) as a drug carrier to deliver various doses of the bisphosphonate zoledronate (Zol) into the distal femur of 8-week-old Sprague-Dawley rats. After 6 weeks, samples were harvested and analyzed by micro-CT and histology. The average bone mineral density and mineralized bone volume fraction were higher with medium- and high-dose PLGA-Zol (30 and 300 µg Zol, respectively) than control and low-dose Zol (3 µg PLGA-Zol; p<0.05). Local controlled delivery of Zol decreased the numbers of osteoclast and increased the numbers of osteoblast. Moreover, local controlled delivery of medium- and high-dose Zol accelerated the expression of bone-formation markers. PLGA used as a drug carrier for controlled delivery of Zol may promote local bone formation.
Collapse
Affiliation(s)
- Wenlong Gou
- Instistute of Orthopaedics, Chinese PLA General Hospital, Haidian District, Beijing, P.R. China
| | - Xin Wang
- Instistute of Orthopaedics, Chinese PLA General Hospital, Haidian District, Beijing, P.R. China
| | - Jiang Peng
- Instistute of Orthopaedics, Chinese PLA General Hospital, Haidian District, Beijing, P.R. China
- * E-mail:
| | - Qiang Lu
- Instistute of Orthopaedics, Chinese PLA General Hospital, Haidian District, Beijing, P.R. China
| | - Yu Wang
- Instistute of Orthopaedics, Chinese PLA General Hospital, Haidian District, Beijing, P.R. China
| | - Aiyuan Wang
- Instistute of Orthopaedics, Chinese PLA General Hospital, Haidian District, Beijing, P.R. China
| | - Quanyi Guo
- Instistute of Orthopaedics, Chinese PLA General Hospital, Haidian District, Beijing, P.R. China
| | - Xupeng Gao
- Instistute of Orthopaedics, Chinese PLA General Hospital, Haidian District, Beijing, P.R. China
| | - Wenjing Xu
- Instistute of Orthopaedics, Chinese PLA General Hospital, Haidian District, Beijing, P.R. China
| | - Shibi Lu
- Instistute of Orthopaedics, Chinese PLA General Hospital, Haidian District, Beijing, P.R. China
| |
Collapse
|
13
|
Alanne AL, Lahtinen M, Löfman M, Turhanen P, Kolehmainen E, Vepsäläinen J, Sievänen E. First bisphosphonate hydrogelators: potential composers of biocompatible gels. J Mater Chem B 2013; 1:6201-6212. [DOI: 10.1039/c3tb20957a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Koch FP, Merkel C, Al-Nawas B, Smeets R, Ziebart T, Walter C, Wagner W. Zoledronate, ibandronate and clodronate enhance osteoblast differentiation in a dose dependent manner – A quantitative in vitro gene expression analysis of Dlx5, Runx2, OCN, MSX1 and MSX2. J Craniomaxillofac Surg 2011; 39:562-9. [DOI: 10.1016/j.jcms.2010.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 08/05/2010] [Accepted: 10/04/2010] [Indexed: 01/09/2023] Open
|
15
|
Açil Y, Möller B, Niehoff P, Rachko K, Gassling V, Wiltfang J, Simon MJK. The cytotoxic effects of three different bisphosphonates in-vitro on human gingival fibroblasts, osteoblasts and osteogenic sarcoma cells. J Craniomaxillofac Surg 2011; 40:e229-35. [PMID: 22082730 DOI: 10.1016/j.jcms.2011.10.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/07/2011] [Accepted: 10/10/2011] [Indexed: 10/15/2022] Open
Abstract
INTRODUCTION Osteonecrosis of the jaw (ONJ) is an emerging condition in patients undergoing long-term administration of bisphosphonates (BP) for the treatment of osteoporosis and hypercalcaemia associated with malignancy, multiple myeloma, and metastatic breast and prostate cancers. This is a follow-up study, its purpose was to examine the effects in-vitro of intravenous zoledronic acid (ZOL) and pamidronate (PAM) and oral alendronate (FOS) on the human oral cavity using gingival fibroblasts and osteoblasts cells and, in addition, osteogenic sarcoma cells (SaOS-2-cells). MATERIALS AND METHODS Human gingival fibroblasts, osteoblasts and SaOS-2-cells were seeded on multiple 6-well plates at a density of 5 × 10(5)cells in a 4-week cell culture. Four different concentrations (1, 5, 10, 20 μM) of each BP (ZOL, PAM, FOS) and pyrophosphate were used in this study. RESULTS All BP decreased collagen production and lowered cell proliferation in-vitro. ZOL was the component with most inhibitory effect. CONCLUSION The findings in this study suggest that ZOL, PAM and FOS generally diminish cell proliferation and collagen production of human gingival fibroblasts, osteoblasts and SaOS-2-cells. The present follow-up study shows that not only ZOL and PAM but also FOS have a strong inhibitory effect on collagen production and cell survival in-vitro.
Collapse
Affiliation(s)
- Y Açil
- Department of Oral and Maxillofacial Surgery, UK S-H, Campus Kiel, Arnold-Heller-Strasse 3, Haus 26, 24105 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Rodríguez K, Renneckar S, Gatenholm P. Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS APPLIED MATERIALS & INTERFACES 2011; 3:681-9. [PMID: 21355545 DOI: 10.1021/am100972r] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Novel cellulose based-scaffolds were studied for their ability to nucleate bioactive calcium phosphate crystals for future bone healing applications. Cellulose-based scaffolds were produced by electrospinning cellulose acetate (CA) dissolved in a mixture of acetone/dimethylacetamide (DMAc). The resulting nonwoven CA mats containing fibrils with diameters in the range of 200 nm to 1.5 μm were saponified by NaOH/ethanol for varying times to produce regenerated cellulose scaffolds. Biomimetic crystal growth nucleated from the fiber surface was studied as a function of surface chemistry. Regenerated cellulose scaffolds of varying treatments were soaked in simulated body fluid (SBF) solution. Scaffolds that were treated with CaCl(2), a mixture of carboxymethyl cellulose (CMC) and CaCl(2), and NaOH and CaCl(2), were analyzed using X-ray photoelectron spectroscopy, X-ray powder diffraction, and scanning electron microscopy to understand the growth of bioactive calcium phosphate (Ca-P) crystals as a function of surface treatment. The crystal structure of the nucleated Ca-P crystals had a diffraction pattern similar to that of hydroxyapatite, the mineralized component of bone. The study shows that the scaffold surface chemistry can be manipulated, providing numerous routes to engineer cellulosic substrates for the requirements of scaffolding.
Collapse
Affiliation(s)
- Katia Rodríguez
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | | | | |
Collapse
|