1
|
Kojima C, Yao J, Nakajima K, Suzuki M, Tsujimoto A, Kuge Y, Ogawa M, Matsumoto A. Attenuated polyethylene glycol immunogenicity and overcoming accelerated blood clearance of a fully PEGylated dendrimer. Int J Pharm 2024; 659:124193. [PMID: 38703934 DOI: 10.1016/j.ijpharm.2024.124193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Polyethylene glycol (PEG) is a popular biocompatible polymer and PEGylated nanoparticles passively accumulate in tumor tissues because of their enhanced permeability and retention effects. Recently, the anti-PEG immunity of PEGylated nanoparticles has become an issue that needs to be solved for their clinical applications. Dendrimers are highly branched and well-defined polymers with many terminal groups, which act as potent drug carriers. In this study, we examined the pharmacokinetics, biodistribution, anti-PEG immunity, and tumor accumulation of a fully PEGylated polyamidoamine (PAMAM) dendrimer after the first and second injections and compared them to those of a PEGylated liposome with the same lipid component as Doxil®. The PEGylated dendrimer showed greater blood circulation than that of the PEGylated liposome after the first and second injections in rats. In mice injected with the PEGylated dendrimer, much less anti-PEG immunoglobulin M (IgM) was generated than that in mice injected with the PEGylated liposome. The PEGylated dendrimer accumulated in the tumor after both the first and second injections. Our results indicated that the PEGylated dendrimer with a small size and high PEG density showed attenuated anti-PEG immunity and overcame the accelerated blood clearance phenomenon, which is useful for drug delivery systems for cancer treatment.
Collapse
Affiliation(s)
- Chie Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Junjie Yao
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Kohei Nakajima
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Motofumi Suzuki
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Ayako Tsujimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Yuji Kuge
- Central Institutes of Isotope Science, Hokkaido University, Kita 15 Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0815, Japan
| | - Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
2
|
Veloso SRS, Gomes V, Mendes SLF, Hilliou L, Pereira RB, Pereira DM, Coutinho PJG, Ferreira PMT, Correa-Duarte MA, Castanheira EMS. Plasmonic lipogels: driving co-assembly of composites with peptide-based gels for controlled drug release. SOFT MATTER 2022; 18:8384-8397. [PMID: 36193825 DOI: 10.1039/d2sm00926a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Supramolecular short peptide-based gels are promising materials for the controlled release of drugs (e.g. chemotherapeutic drugs) owing to the biocompatibility and similarity to cell matrix. However, the drug encapsulation and control over its release, mainly the hydrophilic drugs, can be a cumbersome task. This can be overcome through encapsulation/compartmentalization of drugs in liposomes, which can also enable spatiotemporal control and enhanced drug release through a trigger, such as photothermia. Having this in mind, we explored the assembly of silica-coated gold nanoparticles and liposomes (storage units) with dehydropeptide-based hydrogels as a proof-of-concept to afford peptide-based NIR light-responsive lipogels. Several liposomes compositions were assessed that displayed influence on the final assembly properties by combining with silica-coated gold nanorods (∼106 nm). Gold nanospheres (∼11 nm) were used to study the preparation method, which revealed the importance of initially combine liposomes with nanoparticles and then the gelator solution to achieve a closer proximity of the nanoparticles to the liposomes. The control over a hydrophilic model drug, 5(6)-carboxyfluorescein, was only achieved by its encapsulation in liposomes, in which the presence of silica-coated nanorods further enabled the use of photothermia to induce the liposomes phase transition and stimulate the drug release. Further, both composites, the liposomes and silica-coated gold nanorods, induced a lower elastic modulus, but also provided an enhanced gelation kinetics. Hereby, this work advances fabrication strategies for the development of short peptide-based hydrogels towards on-demand, sustained and controlled release of hydrophilic drugs through photothermia under NIR light irradiation.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET Associate Laboratory, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Valéria Gomes
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET Associate Laboratory, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sérgio L F Mendes
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET Associate Laboratory, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Loic Hilliou
- Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Renato B Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo J G Coutinho
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET Associate Laboratory, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paula M T Ferreira
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Elisabete M S Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET Associate Laboratory, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
3
|
Pan P, Svirskis D, Rees SWP, Barker D, Waterhouse GIN, Wu Z. Photosensitive drug delivery systems for cancer therapy: Mechanisms and applications. J Control Release 2021; 338:446-461. [PMID: 34481021 DOI: 10.1016/j.jconrel.2021.08.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/14/2023]
Abstract
Over the past three decades, various photosensitive nanoparticles have been developed as potential therapies in human health, ranging from photodynamic therapy technologies that have already reached clinical use, to drug delivery systems that are still in the preclinical stages. Many of these systems are designed to achieve a high spatial and temporal on-demand drug release via phototriggerable mechanisms. This review examines the current clinical and experimental applications in cancer treatment of photosensitive drug release systems, including nanocarriers such as liposomes, micelles, polymeric nanoparticles, and hydrogels. We will focus on the three main physicochemical mechanisms of imparting photosensitivity to a delivery system: i) photochemical reactions (oxidation, cleavage, and polymerization), ii) photoisomerization, iii) and photothermal reactions. Photosensitive nanoparticles have a multitude of different applications including controlled drug release, resulting from physical/conformational changes in the delivery systems in response to light of specific wavelengths. Most of the recent research in these delivery systems has primarily focused on improving the efficacy and safety of cancer treatments such as photodynamic and photothermal therapy. Combinations of multiple treatment modalities using photosensitive nanoparticulate delivery systems have also garnered great interest in combating multi-drug resistant cancers due to their synergistic effects. Finally, the challenges and future potential of photosensitive drug delivery systems in biomedical applications is outlined.
Collapse
Affiliation(s)
- Patrick Pan
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Shaun W P Rees
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Auckland 1142, New Zealand
| | - David Barker
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
4
|
Liu J, Zheng A, Peng B, Xu Y, Zhang N. Size-Dependent Absorption through Stratum Corneum by Drug-Loaded Liposomes. Pharm Res 2021; 38:1429-1437. [PMID: 34254224 DOI: 10.1007/s11095-021-03079-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/25/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Topical treatment of various skin disorders requires drug absorption and penetration through the stratum corneum (SC) into the epidermis and dermis tissues. The use of nano-drug delivery systems including liposomes and lipid nanoparticles (SLNs) have been shown to facilitate SC penetration. The goal of this work was to study the impact of liposome sizes and the resulted drug distribution inside various skin tissue. METHODS All trans retinoic acid (ATRA) was used as the model drug and loaded into gel phase HSPC/CHOL/DSPE-PEG liposomes (lipo-ATRA) with sizes ranging from 80 nm to more than 300 nm. The percutaneous drug absorption process was monitored and analyzed. RESULTS There were significant differences in percutaneous absorption and tissue distribution resulted from liposomes smaller than 100 nm and those bigger than 200 nm. Lipo-ATRA with a mean diameter of 83 nm can deliver the content to epidermis and dermis. But for 200 nm - 300 nm liposomes, the resulted epidermis and dermis ATRA levels were less than about one third, suggesting bigger liposomes had poor penetration through the brick and mortar structure of SC. CONCLUSIONS Gel phase liposomes with sizes under 100 nm improved encapsulated drug absorption and distribution into the epidermis and dermis tissues. A size dependent mechanism for liposome penetration of the stratum corneum was proposed.
Collapse
Affiliation(s)
- Junye Liu
- School of Pharmacy, Dali University, Bai Autonomous Prefecture, Dali, China
| | - Anjie Zheng
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| | - Baowei Peng
- School of Pharmacy, Dali University, Bai Autonomous Prefecture, Dali, China
| | - Yuhong Xu
- School of Pharmacy, Dali University, Bai Autonomous Prefecture, Dali, China.
| | - Ning Zhang
- Center for drug evaluation, NMPA, Beijing, China.
| |
Collapse
|
5
|
Onzo A, Pascale R, Acquavia MA, Cosma P, Gubitosa J, Gaeta C, Iannece P, Tsybin Y, Rizzi V, Guerrieri A, Ciriello R, Bianco G. Untargeted analysis of pure snail slime and snail slime-induced Au nanoparticles metabolome with MALDI FT-ICR MS. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4722. [PMID: 33813760 DOI: 10.1002/jms.4722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Chronic wounds result from the failure of the normal wound healing process. Any delay during the tissue repair process could be defined as chronic wound healing, potentially having a highly detrimental impact on human health. To face this problem, in the last years, the use of different technologies alternative to therapeutic agents is gaining more attention. The Helix aspersa snail slime-based products are increasingly being used for skin injury, thanks to their ability to make tissue repair processes faster. To date, a comprehensive overview of pure snail slime metabolome is not available. Besides, Au nanoparticles (AuNPs) technology is spreading rapidly in the medical environment, and the search for AuNPs "green" synthetic routes that involve natural products as precursor agents is demanded, alongside with a deep comprehension of the kind of species that actively take part in synthesis and product stabilization. The aim of this work is to characterize the metabolic profile of a pure snail slime sample, by an untargeted high-resolution mass spectrometry-based analysis. In addition, insights on AuNPs synthesis and stabilization by the main components of pure snail slime used to induce the synthesis were obtained. The untargeted analysis provided a large list of important classes of metabolites, that is, fatty acid derivatives, amino acids and peptides, carbohydrates and polyphenolic compounds that could be appreciated in both samples of slime, with and without AuNPs. Moreover, a direct comparison of the obtained results suggests that mostly nitrogen and sulfur-bearing metabolites take part in the synthesis and stabilization of AuNPs.
Collapse
Affiliation(s)
- Alberto Onzo
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | | | - Maria Assunta Acquavia
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
- ALMAGISI, Bolzano, Italy
| | - Pinalysa Cosma
- Dipartimento di Chimica, Università degli Studi "Aldo Moro" di Bari, Bari, Italy
| | - Jennifer Gubitosa
- Dipartimento di Chimica, Università degli Studi "Aldo Moro" di Bari, Bari, Italy
| | - Carmine Gaeta
- Dipartimento di Chimica e Biologia, Università degli Studi di Salerno, Fisciano, Italy
| | - Patrizia Iannece
- Dipartimento di Chimica e Biologia, Università degli Studi di Salerno, Fisciano, Italy
| | | | - Vito Rizzi
- Dipartimento di Chimica, Università degli Studi "Aldo Moro" di Bari, Bari, Italy
| | - Antonio Guerrieri
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - Rosanna Ciriello
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - Giuliana Bianco
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
6
|
Lima AC, Campos CF, Cunha C, Carvalho A, Reis RL, Ferreira H, Neves NM. Biofunctionalized Liposomes to Monitor Rheumatoid Arthritis Regression Stimulated by Interleukin-23 Neutralization. Adv Healthc Mater 2021; 10:e2001570. [PMID: 33103383 DOI: 10.1002/adhm.202001570] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/08/2020] [Indexed: 12/27/2022]
Abstract
Even after the revolution of rheumatoid arthritis (RA) treatment with biologic agents, this debilitating disease remains a major clinical problem. The outstanding outcomes of the systemic administration of antibodies (Abs) are narrowed by the risk of serious side effects and limited efficacy due to their short half-life. Interleukin-23 (IL-23) is a crucial pro-inflammatory cytokine involved in inflammation that potently enhances the generation of T-helper type-17 (Th17) cells. Hence, in this work, anti-IL-23 Abs are immobilized at the surface of liposomes to increase their therapeutic efficacy, being gold nanoparticles (AuNPs) incorporated to allow monitoring the biodistribution of the liposomes after systemic administration as well as due to their anti-inflammatory and antioxidant effects. A stable monodispersed liposomes' suspension with around 130 nm is produced and efficiently biofunctionalized with anti-IL-23 Abs. IL-23 capture and neutralization capacity are confirmed using activated macrophages. Biological assays demonstrate their hemocompatibility and cytocompatibility with human articular chondrocytes, macrophages, and endothelial cells. Moreover, the neutralization of IL-23 by the biofunctionalized liposomes efficiently decreases the production of IL-17A by peripheral blood mononuclear cells of healthy donors and RA patients who are activated to Th17 differentiation. Therefore, the developed formulation may be a promising strategy to treat RA.
Collapse
Affiliation(s)
- Ana Cláudia Lima
- 3B's Research Group I3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
| | - Cláudia F. Campos
- ICVS/3B's–PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus de Gualtar Braga 4710‐057 Portugal
| | - Cristina Cunha
- ICVS/3B's–PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus de Gualtar Braga 4710‐057 Portugal
| | - Agostinho Carvalho
- ICVS/3B's–PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus de Gualtar Braga 4710‐057 Portugal
| | - Rui L. Reis
- 3B's Research Group I3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
| | - Helena Ferreira
- 3B's Research Group I3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
| | - Nuno M. Neves
- 3B's Research Group I3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
| |
Collapse
|
7
|
|
8
|
Selective uptake and modulation of nanometal surface energy transfer from quantum dot to Au nanoparticle across lipid bilayer of liposomes. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Al-Ahmady ZS, Donno R, Gennari A, Prestat E, Marotta R, Mironov A, Newman L, Lawrence MJ, Tirelli N, Ashford M, Kostarelos K. Enhanced Intraliposomal Metallic Nanoparticle Payload Capacity Using Microfluidic-Assisted Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13318-13331. [PMID: 31478662 DOI: 10.1021/acs.langmuir.9b00579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hybrids composed of liposomes (L) and metallic nanoparticles (NPs) hold great potential for imaging and drug delivery purposes. However, the efficient incorporation of metallic NPs into liposomes using conventional methodologies has so far proved to be challenging. In this study, we report the fabrication of hybrids of liposomes and hydrophobic gold NPs of size 2-4 nm (Au) using a microfluidic-assisted self-assembly process. The incorporation of increasing amounts of AuNPs into liposomes was examined using microfluidics and compared to L-AuNP hybrids prepared by the reverse-phase evaporation method. Our microfluidics strategy produced L-AuNP hybrids with a homogeneous size distribution, a smaller polydispersity index, and a threefold increase in loading efficiency when compared to those hybrids prepared using the reverse-phase method of production. Quantification of the loading efficiency was determined by ultraviolet spectroscopy, inductively coupled plasma mass spectroscopy, and centrifugal field flow fractionation, and qualitative validation was confirmed by transmission electron microscopy. The higher loading of gold NPs into the liposomes achieved using microfluidics produced a slightly thicker and more rigid bilayer as determined with small-angle neutron scattering. These observations were confirmed using fluorescent anisotropy and atomic force microscopy. Structural characterization of the liposomal-NP hybrids with cryo-electron microscopy revealed the coexistence of membrane-embedded and interdigitated NP-rich domains, suggesting AuNP incorporation through hydrophobic interactions. The microfluidic technique that we describe in this study allows for the automated production of monodisperse liposomal-NP hybrids with high loading capacity, highlighting the utility of microfluidics to improve the payload of metallic NPs within liposomes, thereby enhancing their application for imaging and drug delivery.
Collapse
Affiliation(s)
- Zahraa S Al-Ahmady
- Nanomedicine Lab, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health , University of Manchester , Av Hill Building , Manchester M13 9PT , U.K
- Pharmacology Department, School of Science and Technology , Nottingham Trent University , Nottingham NG11 8NS , U.K
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
| | - Roberto Donno
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
- Laboratory of Polymers and Biomaterials , Fondazione Istituto Italiano di Tecnologia , 16163 , Genova , Italy
| | - Arianna Gennari
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
- Laboratory of Polymers and Biomaterials , Fondazione Istituto Italiano di Tecnologia , 16163 , Genova , Italy
| | - Eric Prestat
- SuperSTEM Laboratory , SciTech Daresbury Campus , Keckwick Lane, Warrington WA4 4AD , U.K
| | - Roberto Marotta
- Electron Microscopy Laboratory , Fondazione Istituto Italiano di Tecnologia , 16163 Genova , Italy
| | | | - Leon Newman
- Nanomedicine Lab, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health , University of Manchester , Av Hill Building , Manchester M13 9PT , U.K
| | - M Jayne Lawrence
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
| | - Nicola Tirelli
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
- Laboratory of Polymers and Biomaterials , Fondazione Istituto Italiano di Tecnologia , 16163 , Genova , Italy
| | - Marianne Ashford
- Advanced Drug Delivery Pharmaceutical Sciences, IMED Biotech Unit , AstraZeneca , Macclesfield SK10 2NA , U.K
| | - Kostas Kostarelos
- Nanomedicine Lab, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health , University of Manchester , Av Hill Building , Manchester M13 9PT , U.K
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
| |
Collapse
|
10
|
Naitlho N, Prieto-Dapena F, Rabasco AM, Rueda M, González-Rodríguez ML. Didodecyldimethylammonium Bromide Role in Anchoring Gold Nanoparticles onto Liposome Surface for Triggering the Drug Release. AAPS PharmSciTech 2019; 20:294. [PMID: 31432298 DOI: 10.1208/s12249-019-1492-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Liposomes with their capacity to anchor gold nanoparticles (AuNPs) onto their surface are used in the treatment of several pathologies such as cancer. The objective of this work was the optimization of the vesicle composition by using cationic agents in order to reinforce the anchoring process of AuNPs, and for the study of the influence of local temperature and vesicle size on drug release. A Plackett-Burman design was conducted to determine the optimal composition for the anchoring of AuNPs. A comprehensive study of the influence of lipid bilayer composition on the surface charge, size, and polydispersity index (PdI) of liposomes was carried out. Afterwards, in vitro release studies by dialysis were performed and several release parameters were evaluated as a function of temperature. Cholesterol was fixed as the rigid agent and Didodecyldimethylammonium bromide (DDAB) was selected as the cationic lipid into the liposome bilayer. Photomicrographs revealed that DDAB facilitated the anchoring of AuNPs onto the liposomal surface. The anchoring of AuNPs also enhanced the amount and rate of calcein released, especially in extruded samples, at several incubating temperatures. In addition, it was observed that both the anchoring of AuNPs and the calcein release were improved by increasing the surface of the vesicles. The contributions of liposome composition (DDAB inclusion, incubation temperature, anchoring of AuNPs) and size and surface availability of the vesicles on calcein release could be used to design improved lipid nanostructures for the controlled release of anticancer drugs.
Collapse
|
11
|
Sot J, Mendanha-Neto SA, Busto JV, García-Arribas AB, Li S, Burgess SW, Shaw WA, Gil-Carton D, Goñi FM, Alonso A. The interaction of lipid-liganded gold clusters (Aurora ™) with lipid bilayers. Chem Phys Lipids 2019; 218:40-46. [DOI: 10.1016/j.chemphyslip.2018.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
|
12
|
El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS NANO 2018; 12:10636-10664. [PMID: 30335963 DOI: 10.1021/acsnano.8b06104] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The microenvironment characteristics of solid tumors, renowned as barriers that harshly impeded many drug-delivery approaches, were precisely studied, investigated, categorized, divided, and subdivided into a complex diverse of barriers. These categories were further studied with a particular perspective, which makes all barriers found in solid-tumor micromilieu turn into different types of stimuli, and were considered triggers that can increase and hasten drug-release targeting efficacy. This review gathers data concerning the nature of solid-tumor micromilieu. Past research focused on the treatment of such tumors, the recent efforts employed for engineering smart nanoarchitectures with the utilization of the specified stimuli categories, the possibility of combining more than one stimuli for much-greater targeting enhancement, examples of the approved nanoarchitectures that already translated clinically as well as the obstacles faced by the use of these nanostructures, and, finally, an overview of the possible future implementations of smart-chemical engineering for the design of more-efficient drug delivery and theranostic systems and for making nanosystems with a much-higher level of specificity and penetrability features.
Collapse
Affiliation(s)
- Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy , Egyptian Russian University , Badr City , Cairo 63514 , Egypt
| | - Ahmed M Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy , Gulf Medical University , Ajman , United Arab Emirates
- Pharmacology Department, Medical Division , National Research Centre , Giza 12622 , Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences Center for Pharmaceutical Biotechnology and Nanomedicine , Northeastern University , 140 The Fenway, Room 211/214, 360 Huntington Aveue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
13
|
Mathiyazhakan M, Wiraja C, Xu C. A Concise Review of Gold Nanoparticles-Based Photo-Responsive Liposomes for Controlled Drug Delivery. NANO-MICRO LETTERS 2018; 10:10. [PMID: 30393659 PMCID: PMC6199057 DOI: 10.1007/s40820-017-0166-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/09/2017] [Indexed: 05/18/2023]
Abstract
The focus of drug delivery is shifting toward smart drug carriers that release the cargo in response to a change in the microenvironment due to an internal or external trigger. As the most clinically successful nanosystem, liposomes naturally come under the spotlight of this trend. This review summarizes the latest development about the design and construction of photo-responsive liposomes with gold nanoparticles for the controlled drug release. Alongside, we overview the mechanism involved in this process and the representative applications.
Collapse
Affiliation(s)
- Malathi Mathiyazhakan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
14
|
Hamzawy MA, Abo-youssef AM, Salem HF, Mohammed SA. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice. Drug Deliv 2017; 24:599-607. [PMID: 28240047 PMCID: PMC8240981 DOI: 10.1080/10717544.2016.1247924] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 10/25/2022] Open
Abstract
The current study aimed to develop gold nanoparticles (GNPs) and liposome-embedded gold nanoparticles (LGNPs) as drug carriers for temozolomide (TMZ) and investigate the possible therapeutic effects of intratracheal inhalation of nanoformulation of TMZ-loaded gold nanoparticles (TGNPs) and liposome-embedded TGNPs (LTGNPs) against urethane-induced lung cancer in BALB/c mice. Physicochemical characters and zeta potential studies for gold nanoparticles (GNPs) and liposome-embedded gold nanoparticles (LGNPs) were performed. The current study was conducted by inducing lung cancer chemically via repeated exposure to urethane in BALB/C mice. GNPs and LGNPs were exhibited in uniform spherical shape with adequate dispersion stability. GNPs and LGNPs showed no significant changes in comparison to control group with high safety profile, while TGNPs and LTGNPs succeed to improve all biochemical data and histological patterns. GNPs and LGNPs are promising drug carriers and succeeded in the delivery of small and efficient dose of temozolomide in treatment lung cancer. Antitumor activity was pronounced in animal-treated LTGNPs, these effects may be due to synergistic effects resulted from combination of temozolomide and gold nanoparticles and liposomes that may improve the drug distribution and penetration.
Collapse
Affiliation(s)
- Mohamed A. Hamzawy
- Pharmacology and Toxicology Department, College of Pharmacy, Misr University for Science and Technology, 6th October City, Egypt
| | | | - Heba F. Salem
- Pharmaceutics Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|
15
|
Al-Ahmady Z, Lozano N, Mei KC, Al-Jamal WT, Kostarelos K. Engineering thermosensitive liposome-nanoparticle hybrids loaded with doxorubicin for heat-triggered drug release. Int J Pharm 2017; 514:133-141. [PMID: 27863656 DOI: 10.1016/j.ijpharm.2016.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023]
Abstract
The engineering of responsive multifunctional delivery systems that combine therapeutic and diagnostic (theranostic) capabilities holds great promise and interest. We describe the design of thermosensitive liposome-nanoparticle (NP) hybrids that can modulate drug release in response to external heating stimulus. These hybrid systems were successfully engineered by the incorporation of gold, silver, and iron oxide NPs into the lipid bilayer of lysolipid-containing thermosensitive liposomes (LTSL). Structural characterization of LTSL-NP hybrids using cryo-EM and AFM revealed the incorporation of metallic NPs into the lipid membranes without compromising doxorubicin loading and retention capability. The presence of metallic NPs in the lipid bilayer reinforced bilayer retention and offered a nanoparticle concentration-dependent modulation of drug release in response to external heating. In conclusion, LTSL-NP hybrids represent a promising versatile platform based on LTSL liposomes that could further utilize the properties of the embedded NPs for multifunctional theranostic applications.
Collapse
Affiliation(s)
- Zahraa Al-Ahmady
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom; UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Neus Lozano
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom; UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Kuo-Ching Mei
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom; Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Wafa' T Al-Jamal
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom; University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom; UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom.
| |
Collapse
|
16
|
Kim MS, Lee EJ, Kim JW, Chung US, Koh WG, Keum KC, Koom WS. Gold nanoparticles enhance anti-tumor effect of radiotherapy to hypoxic tumor. Radiat Oncol J 2016; 34:230-238. [PMID: 27730800 PMCID: PMC5066449 DOI: 10.3857/roj.2016.01788] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/13/2016] [Accepted: 08/02/2016] [Indexed: 01/23/2023] Open
Abstract
Purpose Hypoxia can impair the therapeutic efficacy of radiotherapy (RT). Therefore, a new strategy is necessary for enhancing the response to RT. In this study, we investigated whether the combination of nanoparticles and RT is effective in eliminating the radioresistance of hypoxic tumors. Materials and Methods Gold nanoparticles (GNPs) consisting of a silica core with a gold shell were used. CT26 colon cancer mouse model was developed to study whether the combination of RT and GNPs reduced hypoxia-induced radioresistance. Hypoxia inducible factor-1α (HIF-1α) was used as a hypoxia marker. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were conducted to evaluate cell death. Results Hypoxic tumor cells had an impaired response to RT. GNPs combined with RT enhanced anti-tumor effect in hypoxic tumor compared with RT alone. The combination of GNPs and RT decreased tumor cell viability compare to RT alone in vitro. Under hypoxia, tumors treated with GNPs + RT showed a higher response than that shown by tumors treated with RT alone. When a reactive oxygen species (ROS) scavenger was added, the enhanced antitumor effect of GNPs + RT was diminished. Conclusion In the present study, hypoxic tumors treated with GNPs + RT showed favorable responses, which might be attributable to the ROS production induced by GNPs + RT. Taken together, GNPs combined with RT seems to be potential modality for enhancing the response to RT in hypoxic tumors.
Collapse
Affiliation(s)
- Mi Sun Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Eun-Jung Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Won Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Ui Seok Chung
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea
| | - Ki Chang Keum
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Jin X, Zhang P, Luo L, Cheng H, Li Y, Du T, Zou B, Gou M. Efficient intravesical therapy of bladder cancer with cationic doxorubicin nanoassemblies. Int J Nanomedicine 2016; 11:4535-4544. [PMID: 27660445 PMCID: PMC5019456 DOI: 10.2147/ijn.s103994] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nanoparticles have promising applications in drug delivery for cancer therapy. Herein, we prepared cationic 1,2-dioleoyl-3-trimethylammonium propane/methoxypoly (ethyleneglycol) (DPP) nanoparticles to deliver doxorubicin (Dox) for intravesical therapy of bladder cancer. The DPP micelles have a mean dynamic diameter of 18.65 nm and a mean zeta potential of +19.6 mV. The DPP micelles could prolong the residence of Dox in the bladder, enhance the penetration of Dox into the bladder wall, and improve cellular uptake of Dox. The encapsulation by DPP micelles significantly improved the anticancer effect of Dox against orthotopic bladder cancer in vivo. This work described a Dox-loaded DPP nanoparticle with potential applications in intravesical therapy of bladder cancer.
Collapse
Affiliation(s)
- Xun Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Peilan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Li Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Hao Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Yunzu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Ting Du
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Bingwen Zou
- Department of Thoracic Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| |
Collapse
|
18
|
Liu D, Yang F, Xiong F, Gu N. The Smart Drug Delivery System and Its Clinical Potential. Theranostics 2016; 6:1306-23. [PMID: 27375781 PMCID: PMC4924501 DOI: 10.7150/thno.14858] [Citation(s) in RCA: 553] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/22/2016] [Indexed: 12/22/2022] Open
Abstract
With the unprecedented progresses of biomedical nanotechnology during the past few decades, conventional drug delivery systems (DDSs) have been involved into smart DDSs with stimuli-responsive characteristics. Benefiting from the response to specific internal or external triggers, those well-defined nanoplatforms can increase the drug targeting efficacy, in the meantime, reduce side effects/toxicities of payloads, which are key factors for improving patient compliance. In academic field, variety of smart DDSs have been abundantly demonstrated for various intriguing systems, such as stimuli-responsive polymeric nanoparticles, liposomes, metals/metal oxides, and exosomes. However, these nanoplatforms are lack of standardized manufacturing method, toxicity assessment experience, and clear relevance between the pre-clinical and clinical studies, resulting in the huge difficulties to obtain regulatory and ethics approval. Therefore, such relatively complex stimulus-sensitive nano-DDSs are not currently approved for clinical use. In this review, we highlight the recent advances of smart nanoplatforms for targeting drug delivery. Furthermore, the clinical translation obstacles faced by these smart nanoplatforms have been reviewed and discussed. We also present the future directions and perspectives of stimuli-sensitive DDS in clinical applications.
Collapse
Affiliation(s)
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing, 210009, China
| | | | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing, 210009, China
| |
Collapse
|
19
|
Sugikawa K, Kadota T, Yasuhara K, Ikeda A. Anisotropic Self-Assembly of Citrate-Coated Gold Nanoparticles on Fluidic Liposomes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kouta Sugikawa
- Graduate School of Engineering; Hiroshima University; Higashi-Hiroshima 739-8527 Japan
| | - Tatsuya Kadota
- Graduate School of Engineering; Hiroshima University; Higashi-Hiroshima 739-8527 Japan
| | - Kazuma Yasuhara
- Graduate School of Materials Science; Nara Institute of Science and Technology; Nara 630-0192 Japan
| | - Atsushi Ikeda
- Graduate School of Engineering; Hiroshima University; Higashi-Hiroshima 739-8527 Japan
| |
Collapse
|
20
|
Sugikawa K, Kadota T, Yasuhara K, Ikeda A. Anisotropic Self-Assembly of Citrate-Coated Gold Nanoparticles on Fluidic Liposomes. Angew Chem Int Ed Engl 2016; 55:4059-63. [DOI: 10.1002/anie.201511785] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/26/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Kouta Sugikawa
- Graduate School of Engineering; Hiroshima University; Higashi-Hiroshima 739-8527 Japan
| | - Tatsuya Kadota
- Graduate School of Engineering; Hiroshima University; Higashi-Hiroshima 739-8527 Japan
| | - Kazuma Yasuhara
- Graduate School of Materials Science; Nara Institute of Science and Technology; Nara 630-0192 Japan
| | - Atsushi Ikeda
- Graduate School of Engineering; Hiroshima University; Higashi-Hiroshima 739-8527 Japan
| |
Collapse
|
21
|
Wang F, Liu J. Self-healable and reversible liposome leakage by citrate-capped gold nanoparticles: probing the initial adsorption/desorption induced lipid phase transition. NANOSCALE 2015; 7:15599-604. [PMID: 26372064 DOI: 10.1039/c5nr04805b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We herein report that the adsorption/desorption of citrate-capped gold nanoparticles (AuNPs) transiently causes leakage in fluid phase DOPC liposomes, while the liposomes do not leak with AuNPs capped with mercaptopropionic acid (MPA). Leakage also fails to occur for gel phase DPPC liposomes. Citrate-capped (but not MPA-capped) AuNPs raise the phase transition temperature of DPPC. We conclude that citrate-capped AuNPs interact with the PC liposomes very strongly, inducing a local fluid-to-gel lipid phase transition for DOPC. Leakage takes place during this transition, and the membrane integrity is resumed after the transition. Citrate-capped AuNPs allow stronger van der Waals forces than MPA-capped AuNPs with PC liposomes, since the latter are separated from the liposome surface by the ∼0.3 nm MPA layer.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | |
Collapse
|
22
|
Abstract
The discovery of RNA interference (RNAi) in mammalian cells has created a new class of therapeutics based on the reversible silencing of specific disease-causing genes. This therapeutic potential depends on the ability to deliver inducers of RNAi, such as short-interfering RNA (siRNA) and micro-RNA (miRNA), to cells of target tissues. This chapter reviews various challenges and delivery strategies for siRNA, with a particular focus on the development of lipid nanoparticle (LNP) delivery technologies. Currently, LNP delivery systems are the most advanced technology for systemic delivery of siRNA, with numerous formulations under various stages of clinical trials. We also discuss methods to improve gene silencing potency of LNP-siRNA, as well as application of LNP technologies beyond siRNA to the encapsulation of other nucleic acids such as mRNA and clustered regularly interspaced short palindromic repeats (CRISPR).
Collapse
Affiliation(s)
- Alex K K Leung
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Yuen Yi C Tam
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Bhuvana M, Dharuman V. Tethering of spherical DOTAP liposome gold nanoparticles on cysteamine monolayer for sensitive label free electrochemical detection of DNA and transfection. Analyst 2015; 139:2467-75. [PMID: 24652193 DOI: 10.1039/c4an00017j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Construction of spherical liposomes is critical for developing tools for targeted gene and drug delivery applications in biotechnology and medicine, however, it has been demonstrated only in solution phase until now. Spherical liposome tethering on pristine thiol monolayer on gold transducer and its application to label free DNA sensing and transfection has rarely been reported. Here, we report tethering of spherical 1,2-dioleoyltrimethylammoniumpropane liposome-gold nanoparticle (DOTAP-AuNP) on amine terminated monolayer by simple electrostatic interaction on gold transducer for the first time. Cuddling of cationic liposome by AuNP prevents spherical vesicle fusion in both liquid and solid phases, an essential criterion required for gene and drug delivery applications. The spherical nature of DOTAP-AuNPs on a gold surface is confirmed electrochemically using both [Fe(CN)6](3-/4-) and [Ru(NH3)6](3+) redox probes. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS) and ultraviolet-visible (UV) spectroscopic techniques confirm the robust nature of spherical liposome-AuNPs on solid and in liquid phases. The surface is applied for label free DNA hybridization and single nucleotide polymorphism detections sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 100 attomole. DNA transfection is made simply by dropping E. coli cells on DOTAP-AuNP-DNA immobilized transducer surface. The difference between the fluorescent image of transfected E. coli and the differential interference contrast image of E. coli cells by confocal laser scanning microscopy (CLSM) confirms the efficiency and simplicity of the transfection method developed in terms of reduced cost and reagents.
Collapse
Affiliation(s)
- Mohanlal Bhuvana
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Block, Alagappa University, Karaikudi, 630 004, India.
| | | |
Collapse
|
24
|
Liu Y, He M, Niu M, Zhao Y, Zhu Y, Li Z, Feng N. Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: a light-responsive nanocarrier with enhanced antitumor efficiency. Int J Nanomedicine 2015; 10:3081-95. [PMID: 25960649 PMCID: PMC4411020 DOI: 10.2147/ijn.s79550] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Rapid drug release at the specific site of action is still a challenge for antitumor therapy. Development of stimuli-responsive hybrid nanocarriers provides a promising strategy to enhance therapeutic effects by combining the unique features of each component. The present study explored the use of drug–gold nanoparticle conjugates incorporated into liposomes to enhance antitumor efficiency. A model drug, vincristine sulfate, was physically conjugated with gold nanoparticles and verified by UV-visible and fourier transform infrared spectroscopy, and differential scanning calorimetry. The conjugates were incorporated into liposomes by film dispersion to yield nanoparticles (113.4 nm) with light-responsive release properties, as shown by in vitro release studies. Intracellular uptake and distribution was studied in HeLa cells using transmission electron microscopy and confocal laser scanning microscopy. This demonstrated liposome internalization and localization in endosomal–lysosomal vesicles. Fluorescence intensity increased in cells exposed to UV light, indicating that this stimulated intracellular drug release; this finding was confirmed by quantitative analyses using flow cytometry. Antitumor efficacy was evaluated in HeLa cells, both in culture and in implants in vivo in nude mice. HeLa cell viability assays showed that light exposure enhanced liposome cytotoxicity and induction of apoptosis. Furthermore, treatment with the prepared liposomes coupled with UV light exposure produced greater antitumor effects in nude mice and reduced side effects, as compared with free vincristine sulfate.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Man He
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Mengmeng Niu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yiqing Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yuanzhang Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhenhua Li
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nianping Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Witzigmann D, Sieber S, Porta F, Grossen P, Bieri A, Strelnikova N, Pfohl T, Prescianotto-Baschong C, Huwyler J. Formation of lipid and polymer based gold nanohybrids using a nanoreactor approach. RSC Adv 2015. [DOI: 10.1039/c5ra13967h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanocarriers encapsulating gold nanoparticles hold tremendous promise for biomedical applications. The nanoreactor approach offers a versatile, efficient, and highly reproducible preparation technology.
Collapse
Affiliation(s)
- Dominik Witzigmann
- Division of Pharmaceutical Technology
- Department of Pharmaceutical Sciences
- University of Basel
- Basel CH-4056
- Switzerland
| | - Sandro Sieber
- Division of Pharmaceutical Technology
- Department of Pharmaceutical Sciences
- University of Basel
- Basel CH-4056
- Switzerland
| | - Fabiola Porta
- Division of Pharmaceutical Technology
- Department of Pharmaceutical Sciences
- University of Basel
- Basel CH-4056
- Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology
- Department of Pharmaceutical Sciences
- University of Basel
- Basel CH-4056
- Switzerland
| | - Andrej Bieri
- Center for Cellular Imaging and NanoAnalytics (C-CINA)
- Biozentrum
- University of Basel
- Basel CH-4058
- Switzerland
| | | | - Thomas Pfohl
- Department of Chemistry
- University of Basel
- Basel CH-4056
- Switzerland
| | | | - Jörg Huwyler
- Division of Pharmaceutical Technology
- Department of Pharmaceutical Sciences
- University of Basel
- Basel CH-4056
- Switzerland
| |
Collapse
|
26
|
Salehi AH, Montazer M, Toliyat T, Mahmoudi-Rad M. A new route for synthesis of silver:gold alloy nanoparticles loaded within phosphatidylcholine liposome structure as an effective antibacterial agent againstPseudomonas aeruginosa. J Liposome Res 2014; 25:38-45. [DOI: 10.3109/08982104.2014.926917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Bhuvana M, Dharuman V. Construction of spherical liposome on solid transducers for electrochemical DNA sensing and transfection. Appl Biochem Biotechnol 2014; 174:1137-50. [PMID: 24903960 DOI: 10.1007/s12010-014-0992-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
Abstract
Cationic 1,2-dioleoyl trimethyl ammonium propane (DOTAP) and neutral 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) are anchored on cysteamine (cyst), mercaptopropionic acid (MPA) monolayer (thiol monolayers) modified on an individual gold transducer. DOTAP and DOPE are mixed with gold nanoparticle (AuNP) to form spherical liposome-AuNP. The electrochemical behaviors of the surface attached DOTAP-AuNP and DOPE-AuNP in presence of [Fe(CN)6](3-/4-) depend on the method of layer formation. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and ultraviolet (UV)-visible spectroscopic techniques are used to characterize the liposome-AuNP nanocomposite. The studies indicate stability of spherical liposome-AuNP on the gold transducer. Label-free DNA hybridization detection on these surfaces reveals different detection limits. Confocal laser scanning microscopy (CLSM) is used to confirm the cell transfection.
Collapse
Affiliation(s)
- Mohanlal Bhuvana
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630 003, India
| | | |
Collapse
|
28
|
Xia Y, Qi S, Zhang X, Li L, Qu X, Zhang X, Liang J. Construction of thermal- and light-responsive liposomes noncovalently decorated with gold nanoparticles. RSC Adv 2014. [DOI: 10.1039/c4ra07600a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GNP–DPPC, a gold nanoparticle-decorated DPPC liposome complex, can release encapsulated dyes upon heating or illumination. GNP–DPPC also has a faster thermal response and higher critical leakage temperature than liposomes.
Collapse
Affiliation(s)
- Yuqiong Xia
- School of Life Science and Technology
- Xidian University
- Engineering Research Center of Molecular and Neuro Imaging
- Ministry of Education
- Xi’an, China
| | - Shuo Qi
- School of Life Science and Technology
- Xidian University
- Engineering Research Center of Molecular and Neuro Imaging
- Ministry of Education
- Xi’an, China
| | - Xinlong Zhang
- School of Life Science and Technology
- Xidian University
- Engineering Research Center of Molecular and Neuro Imaging
- Ministry of Education
- Xi’an, China
| | - Lei Li
- School of Life Science and Technology
- Xidian University
- Engineering Research Center of Molecular and Neuro Imaging
- Ministry of Education
- Xi’an, China
| | - Xiaochao Qu
- School of Life Science and Technology
- Xidian University
- Engineering Research Center of Molecular and Neuro Imaging
- Ministry of Education
- Xi’an, China
| | - Xianghan Zhang
- School of Life Science and Technology
- Xidian University
- Engineering Research Center of Molecular and Neuro Imaging
- Ministry of Education
- Xi’an, China
| | - Jimin Liang
- School of Life Science and Technology
- Xidian University
- Engineering Research Center of Molecular and Neuro Imaging
- Ministry of Education
- Xi’an, China
| |
Collapse
|
29
|
Tsukada C, Tsuji T, Matsuo K, Nameki H, Yoshida T, Yagi S. Study on interaction between phosphatidylcholine(PC) liposome and gold nanoparticles by TEM observation. ACTA ACUST UNITED AC 2014. [DOI: 10.1384/jsa.20.230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- C. Tsukada
- Department of Quantum Engineering, Graduate School of Engineering, Nagoya University
| | - T. Tsuji
- Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University
| | - K. Matsuo
- Synchrotron Radiation Center, Hiroshima University
| | - H. Nameki
- Aichi Center for Industry and Science Technology
| | - T. Yoshida
- EcoTopia Science Institute, Nagoya University
| | - S. Yagi
- Synchrotron Radiation Center, Hiroshima University
- EcoTopia Science Institute, Nagoya University
| |
Collapse
|
30
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 824] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 2013; 10:831-47. [PMID: 23360440 DOI: 10.1021/mp3005885] [Citation(s) in RCA: 449] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gold nanoparticles (AuNPs) have a number of physical properties that make them appealing for medical applications. For example, the attenuation of X-rays by gold nanoparticles has led to their use in computed tomography imaging and as adjuvants for radiotherapy. AuNPs have numerous other applications in imaging, therapy and diagnostic systems. The advanced state of synthetic chemistry of gold nanoparticles offers precise control over physicochemical and optical properties. Furthermore gold cores are inert and are considered to be biocompatible and nontoxic. The surface of gold nanoparticles can easily be modified for a specific application, and ligands for targeting, drugs or biocompatible coatings can be introduced. AuNPs can be incorporated into larger structures such as polymeric nanoparticles or liposomes that deliver large payloads for enhanced diagnostic applications, efficiently encapsulate drugs for concurrent therapy or add additional imaging labels. This array of features has led to the aforementioned applications in biomedical fields, but more recently in approaches where multifunctional gold nanoparticles are used for multiple methods, such as concurrent diagnosis and therapy, so-called theranostics. This review covers basic principles and recent findings in gold nanoparticle applications for imaging, therapy and diagnostics, with a focus on reports of multifunctional AuNPs.
Collapse
Affiliation(s)
- Aneta J Mieszawska
- Translational and Molecular Imaging Institute and Imaging Science Laboratories, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA
| | | | | | | |
Collapse
|
32
|
Bhuvana M, Narayanan JS, Dharuman V, Teng W, Hahn JH, Jayakumar K. Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing. Biosens Bioelectron 2012; 41:802-8. [PMID: 23141707 DOI: 10.1016/j.bios.2012.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/26/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
Immobilization of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposome-gold nano-particle (DOPE-AuNP) nano-composite covalently on 3-mercaptopropionic acid (MPA) on gold surface is demonstrated for the first time for electrochemical label free DNA sensing. Spherical nature of the DOPE on the MPA monolayer is confirmed by the appearance of sigmoidal voltammetric profile, characteristic behavior of linear diffusion, for the MPA-DOPE in presence of [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+) redox probes. The DOPE liposome vesicle fusion is prevented by electroless deposition of AuNP on the hydrophilic amine head groups of the DOPE. Immobilization of single stranded DNA (ssDNA) is made via simple gold-thiol linkage for DNA hybridization sensing in the presence of [Fe(CN)(6)](3-/4-). The sensor discriminates the hybridized (complementary target hybridized), un-hybridized (non-complementary target hybridized) and single base mismatch target hybridized surfaces sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 0.1×10(-12)M. Cyclic voltammetry (CV), electrochemical impedance (EIS), differential pulse voltammetry (DPV) and quartz crystal microbalance (QCM) techniques are used for DNA sensing on DOPE-AuNP nano-composite. Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Ultraviolet-Visible (UV) spectroscopic techniques are used to understand the interactions between the DOPE, AuNP and ssDNA. The results indicate the presence of an intact and well defined spherical DOPE-AuNP nano-composite on the gold surface. The method could be applied for fabrication of the surface based liposome-AuNP-DNA composite for cell transfection studies at reduced reagents and costs.
Collapse
Affiliation(s)
- M Bhuvana
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, India
| | | | | | | | | | | |
Collapse
|
33
|
Gold nanoparticle-biotinylated liposome hybrids as analytical reagents for biotin determination using a competitive assay and resonance light scattering detection. Talanta 2012; 99:538-43. [DOI: 10.1016/j.talanta.2012.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/08/2012] [Accepted: 06/15/2012] [Indexed: 11/24/2022]
|
34
|
Microstructure study of liposomes decorated by hydrophobic magnetic nanoparticles. Chem Phys Lipids 2012; 165:563-70. [DOI: 10.1016/j.chemphyslip.2012.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 11/15/2022]
|
35
|
Rana S, Bajaj A, Mout R, Rotello VM. Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev 2012; 64:200-16. [PMID: 21925556 DOI: 10.1016/j.addr.2011.08.006] [Citation(s) in RCA: 322] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 12/15/2022]
Abstract
Gold nanoparticles (AuNPs) provide attractive vehicles for delivery of drugs, genetic materials, proteins, and small molecules. AuNPs feature low core toxicity coupled with the ability to parametrically control particle size and surface properties. In this review, we focus on engineering of the AuNP surface monolayer, highlighting recent advances in tuning monolayer structures for efficient delivery of drugs and biomolecules. This review covers two broad categories of particle functionalization, organic monolayers and biomolecule coatings, and discusses their applications in drug, DNA/RNA, protein and small molecule delivery.
Collapse
Affiliation(s)
- Subinoy Rana
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, MA-01003, USA
| | | | | | | |
Collapse
|
36
|
Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 2011; 44:1094-104. [PMID: 21812415 DOI: 10.1021/ar200105p] [Citation(s) in RCA: 456] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For decades, clinicians have used liposomes, self-assembled lipid vesicles, as nanoscale systems to deliver encapsulated anthracycline molecules for cancer treatment. The more recent proposition to combine liposomes with nanoparticles remains at the preclinical development stages; however, such hybrid constructs present great opportunities to engineer theranostic nanoscale delivery systems, which can combine simultaneous therapeutic and imaging functions. Many novel nanoparticles of varying chemical compositions are being developed in nanotechnology laboratories, but further chemical modification is often required to make these structures compatible with the biological milieu in vitro and in vivo. Such nanoparticles have shown promise as diagnostic and therapeutic tools and generally offer a large surface area that allows covalent and non-covalent surface functionalization with hydrophilic polymers, therapeutic moieties, and targeting ligands. In most cases, such surface manipulation diminishes the theranostic properties of nanoparticles and makes them less stable. From our perspective, liposomes offer structural features that can make nanoparticles biocompatible and present a clinically proven, versatile platform for further enhancement of the pharmacological and diagnostic efficacy of nanoparticles. In this Account, we describe two examples of liposome-nanoparticle hybrids developed as theranostics: liposome-quantum dot hybrids loaded with a cytotoxic drug (doxorubicin) and artificially enveloped adenoviruses. We incorporated quantum dots into lipid bilayers, which rendered them dispersible in physiological conditions. This overall vesicular structure allowed them to be loaded with doxorubicin molecules. These structures exhibited cytotoxic activity and labeled cells both in vitro and in vivo. In an alternative design, lipid bilayers assembled around non-enveloped viral nanoparticles and altered their infection tropism in vitro and in vivo with no chemical or genetic capsid modifications. Overall, we have attempted to illustrate how alternative strategies to incorporate nanoparticles into liposomal nanostructures can overcome some of the shortcomings of nanoparticles. Such hybrid structures could offer diagnostic and therapeutic combinations suitable for biomedical and even clinical applications.
Collapse
Affiliation(s)
- Wafa' T Al-Jamal
- Nanomedicine Laboratory, Centre for Drug Delivery Research, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | | |
Collapse
|
37
|
Berbeco RI, Ngwa W, Makrigiorgos GM. Localized Dose Enhancement to Tumor Blood Vessel Endothelial Cells via Megavoltage X-rays and Targeted Gold Nanoparticles: New Potential for External Beam Radiotherapy. Int J Radiat Oncol Biol Phys 2011; 81:270-6. [DOI: 10.1016/j.ijrobp.2010.10.022] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/04/2010] [Accepted: 10/23/2010] [Indexed: 01/06/2023]
|
38
|
Dave N, Liu J. Protection and promotion of UV radiation-induced liposome leakage via DNA-directed assembly with gold nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:3182-3186. [PMID: 21630360 DOI: 10.1002/adma.201101086] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/19/2011] [Indexed: 05/30/2023]
Affiliation(s)
- Neeshma Dave
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada
| | | |
Collapse
|
39
|
Chen Y, Bothun GD. Cationic gel-phase liposomes with "decorated" anionic SPIO nanoparticles: morphology, colloidal, and bilayer properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:8645-8652. [PMID: 21649441 DOI: 10.1021/la2011138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The assembly and complexation of oppositely charged colloids are important phenomena in many natural and synthetic processes. Liposome-nanoparticle assemblies (LNAs) represent an interesting hybrid system that combines "soft" and "hard" colloidal materials. This work describes the formation and characterization of gel-phase LNAs formed by the binding of anionic superparamagnetic iron oxide (SPIO) nanoparticles to cationic dipalmitoylphosphatidylcholine (DPPC)/dipalmitoyltrimethylammonium propane (DPTAP) liposomes. Particles were examined with hydrodynamic diameters below (16 nm) and above (30 nm) the cutoff reported for supported lipid bilayer formation. LNA formation with 16 nm particles was entropically driven and particles bound individually to yield "decorated" structures. In this case, increasing nanoparticle concentration yielded colloidal LNA aggregates and eventual charge inversion. In contrast, LNA formation with 30 nm particles was enthalpically driven, and the nanoparticles aggregated at the bilayer interface. These aggregates led to significant LNA aggregation and large bilayer sheets due to liposome rupture despite minimal charge screening of the liposome surface. In this case SLBs were present, but these structures were not dominant. Differences in LNA structure were also revealed through the lipid phase transition behavior. This work infers size-dependent nanoparticle binding and LNA formation mechanisms that can be used to tailor colloidal and bilayer properties. Analogies are made to polyelectrolyte patch charge heterogeneities and DNA complexation with cationic liposomes.
Collapse
Affiliation(s)
- Yanjing Chen
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | | |
Collapse
|
40
|
Abstract
INTRODUCTION Nanoscale assemblies are needed that achieve multiple therapeutic objectives, including cellular targeting, imaging, diagnostics and drug delivery. These must exhibit high stability, bioavailability and biocompatibility, while maintaining or enhancing the inherent activity of the therapeutic cargo. Liposome-nanoparticle assemblies (LNAs) combine the demonstrated potential of liposome-based therapies, with functional nanoparticles. Specifically, LNAs can be used to concentrate and shield the nanoparticles and, in turn, stimuli-responsive nanoparticles that respond to external fields can be used to control liposomal release. The ability to design LNAs via nanoparticle encapsulation, decoration or bilayer-embedment offers a range of configurations with different structures and functions. AREAS COVERED This paper reviews the current state of research and understanding of the design, characterization and performance of LNAs. A brief overview is provided on liposomes and nanoparticles for therapeutic applications, followed by a discussion of the opportunities and challenges associated with combining the two in a single assembly to achieve controlled release via light or radiofrequency stimuli. EXPERT OPINION LNAs offer a unique opportunity to combine the therapeutic properties of liposomes and nanoparticles. Liposomes act to concentrate small nanoparticles and shield nanoparticles from the immune system, while the nanoparticle can be used to initiate and control drug release when exposed to external stimuli. These properties provide a platform to achieve nanoparticle-controlled liposomal release. LNA design and application are still in infancy. Research concentrating on the relationships among LNA structure, function and performance is essential for the future clinical use of LNAs.
Collapse
Affiliation(s)
- Matthew R Preiss
- Department of Chemical Engineering, Rhode Island Consortium for Nanoscience and Nanotechnology, University of Rhode Island, 16 Greenhouse Road, Kingston, RI 02881, USA.
| | | |
Collapse
|
41
|
Umeda Y, Kojima C, Harada A, Horinaka H, Kono K. PEG-attached PAMAM dendrimers encapsulating gold nanoparticles: growing gold nanoparticles in the dendrimers for improvement of their photothermal properties. Bioconjug Chem 2011; 21:1559-64. [PMID: 20666440 DOI: 10.1021/bc1001399] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recently, we demonstrated that loading of HAuCl(4) in poly(ethylene glycol) (PEG)-attached poly(amidoamine) (PAMAM) G4 dendrimers and subsequent reduction with NaBH(4) yield dendrimers encapsulating gold nanoparticles (Au NPs), which have photoinduced heat-generating properties. This study was undertaken to enhance photothermal properties of the Au NP-incorporated PEG-attached dendrimers by growing Au NPs in the dendrimers. Repeated loading of HAuCl(4) in the PEG-attached dendrimers and subsequent reduction with NaBH(4) enhanced the surface plasmon resonance, indicating that Au NPs were grown in the PEG-attached dendrimers using that procedure. Transmission electron microscopy (TEM) analysis revealed that the size of Au NPs formed in the dendrimers increased with the number of repetitions of HAuCl(4) loading and subsequent reduction in the dendrimers, although the size distribution of the Au NPs remained narrow. The photoinduced-heat generation capability of the Au NPs-encapsulating dendrimers increased as the Au NPs grew. These dendrimers with Au NPs exhibited strong cytotoxicity against HeLa cells under visible light irradiation. The result demonstrates that PEG-attached dendrimers encapsulating the grown Au NPs might be useful as devices for target-specific therapy when used with light irradiation.
Collapse
Affiliation(s)
- Yasuhito Umeda
- Department of Applied Chemistry, Graduate School of Engineering, Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, Osaka, Japan
| | | | | | | | | |
Collapse
|
42
|
Kang MJ, Lee S, Kim BK, Eum JY, Park SH, Kang MH, Oh CH, Choo J, Choi YW. Pep-1 Peptide-Modified Liposomal Carriers for Intracellular Delivery of Gold Nanoparticles. Chem Pharm Bull (Tokyo) 2011; 59:109-12. [DOI: 10.1248/cpb.59.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Sangyeop Lee
- Department of Bionano Engineering, Hanyang University
| | | | | | | | | | | | - Jaebum Choo
- Department of Bionano Engineering, Hanyang University
| | | |
Collapse
|
43
|
Green synthesis of gold nanoparticles by the marine microalgaTetraselmis suecica. Biotechnol Appl Biochem 2010; 57:71-5. [DOI: 10.1042/ba20100196] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Kojima C, Hirano Y, Kono K. Chapter 7 - Preparation of complexes of liposomes with gold nanoparticles. Methods Enzymol 2010; 464:131-45. [PMID: 19903553 DOI: 10.1016/s0076-6879(09)64007-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Liposomes have been widely used as drug carriers. Visible liposomes have recently become more attractive as drug carriers in personalized medicine. Gold nanoparticles (Au NPs) have unique size- and shape-dependent properties based on their surface plasmon resonance. They can be visualized by computed tomography (CT) and laser optoacoustic imaging. In addition, their photothermogenic properties are useful for photothermal therapy and photoresponsive drug release from liposomes. Therefore, complexation of liposomes with Au NPs is of considerable interest. There are three types of complex: Liposomes containing Au NPs in the inner phase, liposomes with Au NPs at the lipid membrane, and liposomes modified with Au NPs on the surface. This chapter focuses on the preparation and characterization of the third type of complex that is prepared by direct mixing of a Au NP dispersion with a liposome suspension.
Collapse
Affiliation(s)
- Chie Kojima
- Nanoscience and Nanotechnology Research Center, Research Institutes for the Twenty First Century, Osaka Prefecture University, Osaka, Japan
| | | | | |
Collapse
|
45
|
Yagüe C, Arruebo M, Santamaria J. NIR-enhanced drug release from porous Au/SiO2 nanoparticles. Chem Commun (Camb) 2010; 46:7513-5. [DOI: 10.1039/c0cc01897j] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Ito S, Miyoshi N, Degraff WG, Nagashima K, Kirschenbaum LJ, Riesz P. Enhancement of 5-Aminolevulinic acid-induced oxidative stress on two cancer cell lines by gold nanoparticles. Free Radic Res 2009; 43:1214-24. [DOI: 10.3109/10715760903271249] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Sau TK, Urban AS, Dondapati SK, Fedoruk M, Horton MR, Rogach AL, Stefani FD, Rädler JO, Feldmann J. Controlling loading and optical properties of gold nanoparticles on liposome membranes. Colloids Surf A Physicochem Eng Asp 2009. [DOI: 10.1016/j.colsurfa.2009.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Chithrani DB, Dunne M, Stewart J, Allen C, Jaffray DA. Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2009; 6:161-9. [PMID: 19447206 DOI: 10.1016/j.nano.2009.04.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/27/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
Abstract
UNLABELLED Recent interest in using gold nanoparticles (Au NPs) for therapy in radiation medicine has motivated development of a liposome-based system to enhance their delivery to cells. In this study, liposomes were demonstrated to perform like a "Trojan Horse" to deliver small (1.4 nm) Au NPs into tumor cells by overcoming the energetically unfavorable endocytosis process for small NPs. The results reveal that the liposomal approach provides a thousand-fold enhancement in the cellular uptake of the small Au NPs. Real-time intracellular tracking of the Au NP-liposomes revealed an average speed of 12.48 +/- 3.12 microm/hr for their intracellular transport. Analysis of the time-dependent intracellular spatial distribution of the Au NP-liposomes demonstrated that they reside in lysosomes (final degrading organelles) within 40 minutes of incubation. Knowledge gained in these studies opens the door to pursuing liposomes as a viable strategy for delivery of Au NPs in radiation therapy applications. FROM THE CLINICAL EDITOR Gold nanoparticles (Au NPs) as part of an optimized liposome-based delivery system have been proposed for therapy in radiation medicine. The approach resulted in a thousand-fold enhancement in the cellular uptake of Au NPs compared to conventional delivery methods, with the nanoparticles residing in lysosomes within 40 minutes of incubation.
Collapse
Affiliation(s)
- Devika B Chithrani
- Department of Radiation Physics, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
49
|
Nagasaki T. Photoresponsive polymeric materials for drug delivery systems: double targeting with photo-responsive polymers. ACTA ACUST UNITED AC 2008. [DOI: 10.2745/dds.23.637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|